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Abstract

We study multilateral risk-sharing when the state of nature is unverifiable,

such that contracts are conditioned on a state-dependent signal (e.g., net earn-

ings in a financial report). A subset of the agents can manipulate the signal’s

realization at some cost (e.g., by performing financial acrobatics) and as a result

Pareto-optimal risk-sharing is precluded. The agents are able to write additional

bilateral side-contracts without withdrawing from the prevailing risk-sharing

agreements. Such side-contracts can be used to incentivize one of the parties

to manipulate the signal. Using a weak stability notion we show that, in gen-

eral, stable contracts are not constrained-Pareto-optimal. We derive closed-form

solutions for the maximal possible coverage in a few settings (reinsurance of a

local shock, joint venture) and show that it is significantly below the constrained-

Pareto-optimal level of insurance. Moreover, it is non-monotone in the number

of agents who can manipulate the signal.
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1 Introduction

It is well known that when risk-averse agents have access to Arrow-Debreu securities,

they can share risk efficiently. In practice, however, state-contingent contracts are

not always feasible, for a variety of reasons: the state of nature may be unobserv-

able, unverifiable, or hard to assess to the point where state-contingent contracts are

unenforceable or too costly to implement.

For these reasons, many risk-sharing contracts are contingent on verifiable variables

that are informative about the state of nature, rather than contingent on the state of

nature itself. For example, insurance contracts are often contingent on an appraisal

rather than on actual damage. Other prominent examples are managerial compensation

contracts, which are often contingent on the firm’s net earnings as they appear in its

financial reports rather than contingent on the firm’s actual performance; derivatives,

which are often contingent on the value of a stock rather than on its fundamentals;

and benchmarks such as the inter-bank offered rates (a measure of the interest rate

at which large banks can borrow from one another on an unsecured basis), which are

often used in contracts to transfer risk related to fluctuations in general market-wide

interest rates (Duffie and Stein, 2015). In the present paper, we focus on contracts of

this kind and refer to the contractible variable as a signal about the state of nature.

Sharing risk in these types of contracts gives rise to a moral hazard problem that

results from the agents’ ability to manipulate the signal’s realization by taking costly

actions. Such costly actions include: forging an appraisal, or misreporting the occur-

rence of an insurable event; deferring recognition of some expenditure in order to change

a firm’s net earnings/inventory at a specific date; bailing out a distressed debtor when

a contract is contingent on a third party’s debt solvency; manipulating future prices

in a commodity market by submitting large buy or sell orders on the spot market;

manipulating the rate of a currency by providing the customers of a large investment

bank with a false recommendation to buy/sell it; and hiring lobbyists to influence a

regulator’s action (on which a contract depends).

We study multilateral risk-sharing in an economy that consists of n > 2 agents.

Risk is shared by using contracts that are contingent on a signal that reveals the

state of nature. A risk-sharing contract sets transfers between the contracting agents

contingent on the signal. Some of the agents have the ability to unilaterally manipulate

the signal’s realization by incurring some cost.

The timeline in the model is as follows. In period 0, contracts are signed by the

agents. We often refer to the collection of these contracts as the multilateral contract.
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At the beginning of period 1, the state of nature and its corresponding signal are

realized. When for each agent the cost of manipulating the signal is greater than

the corresponding benefit, the multilateral contract is said to be incentive compatible,

and we assume that the signal perfectly reveals the state of nature (i.e., there is no

manipulation). If the multilateral contract is not incentive compatible, then the agent

who sets the value of the signal to his preferred realization is the one who benefits the

most from doing so.1 In period 2, the contracts are enforced according to the signal

that was set in period 1.

To illustrate some of the model’s features, we present the following example.

Example 1 There are two states, good (g) and bad (b). Kate and Bruce are exposed

to a negative shock of 100 dollars each in state b. There are n−2 risk-neutral insurers.

Risk-sharing contracts are contingent on an appraisal y ∈ {b, g} made by a certified

appraiser. Kate and Bruce both know the appraiser. In state g, each of them can pay

the appraiser a bribe of 90 dollars so that he will change the appraisal to b.

Observe that full insurance is not incentive compatible since it incentivizes Kate or

Bruce to bribe the appraiser in state g. Because of the moral hazard, each of them can

receive a coverage of at most 90 dollars. Since the insurers are risk-neutral, this is also

the coverage that Kate and Bruce receive in every multilateral contract that is individ-

ually rational and not Pareto-dominated. We refer to such contracts as constrained-

efficient contracts.

The main novelty in this work is that, in the contracting stage, agents can add new

bilateral side-contracts to the prevailing multilateral contract without withdrawing

from it. The purpose of an additional side-contract can be either legitimate mutual

insurance or to incentivize one of the contracting counter-parties to manipulate the

signal. This introduces a new source of instability into multilateral risk-sharing since

these contracts impose an externality on third parties.

We use Example 1 to demonstrate how a pair of agents may benefit from the

addition of a side-contract that incentivizes one of them to manipulate the signal.

Let us consider a multilateral risk-sharing contract in which Bruce and Kate receive

coverage of 90 dollars each. Recall that this is the maximal coverage that each of them

can receive without violating his/her incentive constraint. Both Kate and Bruce are

better off if, in the contracting stage, they add a side-contract in which Bruce pays Kate

a small ε > 0 if and only if y = b. This contract violates Kate’s incentive constraint and

1In Appendix A, we discuss this assumption and show that it is a result of an equilibrium in two
natural manipulation games.
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incentivizes her to bribe the appraiser in state g. Bruce is better off since he guarantees

his preferred appraisal by paying a small cost of ε. Roughly speaking, the bilateral

contract between Kate and Bruce violates the stability of the multilateral risk-sharing

contract because it makes both of them better off when the possibility of ex-post

manipulation is taken into account. Note that Kate and Bruce’s side-contract imposes

a negative externality on insurers who provide them with coverage. An insurer who

predicts this externality would be unwilling to provide Kate or Bruce with coverage.

Our main research objective is to study whether and to what extent the combination

of the agents’ ability to write bilateral side-contracts and the manipulability of the

signal restricts multilateral risk-sharing. The answer to this question has potential

implications on numerous risk-sharing environments that are exposed to manipulation.

In particular, it has implications on the level of risk that can be transferred using

contracts that are conditioned on economic benchmarks such as the inter-bank offered

rates and on the manipulability of these benchmarks. These benchmarks have an

important role in reducing market frictions (Duffie and Stein, 2015). In designing such

benchmarks, manipulability is a major consideration (see, e.g., Duffie and Stein, 2015

and Duffie and Dworczak, 2015).

We study the multilateral risk-sharing problem by using a stability notion that is

inspired by Jackson and Wolinsky’s (1996) pairwise stability. Since writing a bilateral

contract requires mutual consent and this notion is easily applicable, we find it to

be a good starting point for our analysis. A multilateral contract is pairwise stable

if there is no pair of agents who are better off adding a new bilateral side-contract

(without withdrawing from the prevailing multilateral contract). It turns out that

a pairwise stable multilateral contract does not exist. When the agents have low

insurance coverage, there is a pair of agents who are better off adding a side-contract

that increases their coverage. When the agents’ insurance coverage is high, there are

two agents who are better off adding a new bilateral side-contract that incentivizes one

of them to manipulate the signal.

Pairwise stability involves the following restrictive implicit assumption: each agent

i who takes part in some deviation believes that there are no additional deviations that

make him worse off if he agrees to take part in this deviation. In particular, he believes

that the counter-party to the deviation does not have an ulterior motive such as other

side-contracts (with other agents) that are not observed by i. This assumption follows

from the fact that pairwise stability considers the addition of one side-contract at a

time. This assumption is particularly restrictive in the present paper’s setting since

the attractiveness of a contract (and, in particular, of taking part in a deviation) is
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affected by the actions of third parties.

We relax the above-mentioned assumption by developing a new weaker stability

notion, which we shall refer to as weak stability. Weak stability incorporates consider-

ations that are familiar from the Nash equilibrium refinements literature into a notion

of stability in the tradition of cooperative game theory. The idea behind weak stabil-

ity is that each pairwise deviation can be viewed as if it were initiated by one of the

deviating counter-parties, say, i. An agent j who receives an offer to take part in this

deviation conjectures which other deviations agent i has initiated with other agents

because they have an effect on the attractiveness of i’s offer. The only restriction we

impose on agent j’s conjecture is that it must rationalize the observed offer. That is,

i’s offer to j is required to make i better off, according to j’s conjecture. We refer

to such a conjecture as consistent. Agent j rejects i’s offer if there exist consistent

conjectured deviations that make j worse off if he agrees to i’s offer.

Let us demonstrate this logic using Example 1. Consider a multilateral contract

in which Kate receives a coverage of 90 dollars (i.e., she is indifferent whether to

bribe the appraiser or not) and Bruce is not covered. Suppose Bruce offers one of

the insurers, Susie, to write a bilateral side-contract in which she provides him with

coverage in return for some premium. How should Susie respond to Bruce’s offer? It

depends on her beliefs about other deviations from the prevailing multilateral contract

initiated by Bruce. Suppose Susie suspects that Bruce contemporaneously offered

Kate a contract in which he pays her a small ε > 0 if and only if y = b. This

contract violates Kate’s incentive constraint and incentivizes her to bribe the appraiser

in state g. If ε is sufficiently small, Susie’s conjecture rationalizes Bruce’s offer since the

conjectured contract between Bruce and Kate guarantees Bruce’s preferred realization.

By accepting Bruce’s offer, Susie exposes herself to a negative externality imposed on

her by Kate’s bribe. Therefore, Susie rejects Bruce’s offer.

Is there a multilateral contract that is both weakly stable and constrained-efficient?

Weakly stable contracts exist. However, the existence of a contract that is both weakly

stable and constrained-efficient depends on the fraction of agents who are able to

manipulate the signal. This dependence is non-monotone. When a subset of agents

is unable to manipulate the signal, the answer to this question is negative. Moreover,

the difference between the maximal level of insurance attainable via a weakly stable

contract and the level of insurance in a constrained-efficient contract can be large. If,

however, all agents are able to manipulate the signal, every weakly stable contract is

constrained-efficient.

We apply our results in three different risk-sharing settings: a joint venture that in-
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volves agents with different risk attitudes, a setting in which only one agent is exposed

to a shock, and a re-insurance market, which is our main application. Re-insurance in-

struments (e.g., catastrophe bonds) are used to transfer risk resulting from high-volume

events from primary insurers to re-insurers or to the capital market. These instruments

are often conditioned on state-dependent signals, in order to avoid moral hazard in un-

derwriting and claim settlements (see Doherty, 1997). Such state-dependent signals

include policy makers’ actions (e.g., a declaration of a disaster), weather indices, and

industry-loss indices.

We study a re-insurance market in which primary insurers who are exposed to a

common shock transfer risk to an infinite group of re-insurers. Some of the primary

insurers can potentially manipulate the signal. The re-insurers cannot manipulate the

signal. We study the maximal coverage that the primary insurers can attain with

weakly stable contracts that provide fair insurance and show that it is U-shaped in the

number of potential manipulators. We obtain a closed-form solution and show that the

negative effect on the level of coverage is of first-order magnitude. Moreover, even when

manipulation becomes more costly such that constrained-efficient coverage approaches

full insurance, the aforementioned effect does not disappear (i.e, it is bounded away

from zero).

The paper proceeds as follows. We present the model in Section 2 and analyze

it in Section 3. In Section 4 we present three applications. In Section 5 we discuss

and relax some of our modeling assumptions. Section 6 concludes and discusses the

related literature. In Appendix A we present and discuss manipulation games and in

Appendix B we extend the model to allow for multilateral side-contracts. Proofs that

are omitted from the main text appear in Appendix C.

2 The model

Let I = {1, ..., n} be a set of agents and let Θ = {1, 2} denote the set of states. Each

state θ ∈ Θ is realized with probability pθ and this is common knowledge among the

members of I. Each agent i’s preferences are represented by a strictly concave vNM

utility function.2 Each agent i ∈ I has a positive endowment denoted by wi (θ) in each

θ ∈ Θ. Define Wi := wi (2)− wi (1). We refer to Wi as agent i’s initial exposure.

The state of nature is not contractible. Let Y = {1, 2} be a set of signals. We use y

to denote a typical element of Y . We assume that if no one manipulates the signal, it

2For ease of exposition, we assume the existence of risk-neutral agents in some of the applications.
Also, whenever ui is defined over R++, our convention is that ui (z) = −∞ for all z ≤ 0.
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matches the state of nature. The agents share risk using contracts that are contingent

on the signal.

A multilateral contract gK : Y → Rn sets budget-balanced transfers among a group

of agents K ⊆ I as a function of the realized signal. We denote gKi (y′) the transfer

received by i ∈ K (according to gK) in the case where3 y = y′. For i 6∈ K, gKi (y′) := 0.

Define Ri

(
gK
)

:= gKi (2) − gKi (1). We refer to Ri (g) as agent i’s coverage in g. For

any two contracts gK , ḡK
′
, we use gK + ḡK

′
to denote the summation over the transfers

in the two contracts. That is, for each y ∈ {1, 2},
(
gK + ḡK

′)
i
(y) := gKi (y) + ḡK

′
i (y).

We often focus on one multilateral contract that sums all the contracts between the

members of I and we reserve g to describe this contract. We refer to Wi + Ri (g) as

agent i’s ex-post exposure.

For ease of exposition, it is useful to use a different notation for bilateral contracts.

A bilateral contract bij : Y → R between i and j sets a transfer bij (y) from j to i

contingent on the realization of the signal. We write bij + bkl to denote a contract that

sums the transfers made in the two bilateral contracts.

We assume that the signal is manipulable: each agent i ∈ M ⊆ I can change its

realization y from θ to θ′ 6= θ by paying a cost4 c > 0. From now on, we denote

the signal that results from the contract g in state θ by y (g, θ). We say that the

contract g is incentive compatible (IC) if |Ri (g)| ≤ c for all i ∈ M . We assume

that if g is IC, then y (g, θ) = θ for each θ ∈ {1, 2}. If g is not IC, then the set

PM (g) = {i ∈M : |Ri (g)| > c} is not empty. We assume that, in this case, the lowest

labeled agent i ∈ PM (g) such that i ∈ arg maxi′∈PM(g) |Ri′ (g)| sets the signal such

that y (g, θ) = 2 if and only if Ri (g) > 0. Agent i pays a cost of c (0) if y (g, θ) 6= θ

(y (g, θ) = θ).

This assumption implies that if a contract is IC, no agent manipulates the signal.

When some agents are incentivized to manipulate the signal (that is, when a contract is

not IC), the agent who has the most coverage (in absolute value) is the one who decides

on the signal’s realization and pays for manipulation in the state in which he needs

to manipulate the signal. We have in mind a case in which there are many random

opportunities to manipulate the signal (the agents get random access to a regulator,

or to the financial reports). All agents believe that the agent who receives the most

coverage will manipulate the signal to his preferred realization whenever he gets the

opportunity to do so, and therefore they abstain from incurring the manipulation cost.

3The results in the paper hold if the agents are allowed to burn money such that for each y ∈ Y ,∑
k∈K gKk (y) ≤ 0.
4The symmetry assumption is discussed and relaxed in Section 5.
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Since manipulation may take place in many different ways we use the aforemen-

tioned reduced form assumption and do not commit ourselves to a specific manipulation

game. In Appendix A we discuss this assumption and show that it can be a result of

an equilibrium in a manipulation game. We also present three games in which this

assumption is not a result of an equilibrium. Nevertheless, we show that our main

result holds when we replace our assumption with each of these three games.

We wish to emphasize that the agents manipulate the signal and not the state of

nature. This implies that manipulations do not affect the agents’ payoffs via their

endowments. As an illustration, consider Example 1 and suppose that Kate and Bruce

own equal shares of an asset. There are two ways for Kate to manipulate the appraiser’s

report. First, she can bribe the appraiser; this affects Bruce’s payoff via the insurance

contracts that he signed. Second, Kate can damage the asset such that the appraiser

will report that the negative shock was realized. This type of manipulation affects

Bruce’s endowments and is not captured by the present model. We discuss state-

contingent contracts and state manipulation in the concluding section.

A contract g is said to be individually rational (IR) for agent i 6∈ PM (g) if

p1ui (wi (1)) + p2ui (wi (2))

≤ p1ui (wi (1) + gi (y (g, 1))) + p2ui (wi (2) + gi (y (g, 2)))

We say that g is IR if it is IR for all i ∈ I.

For each i ∈ I, we use �i to represent i’s indirect preferences over contracts. For

example, suppose that g is IC and g′ is not IC: PM (g′) = {j} and Rj (g′) < 0. Then,

for i ∈ I/ {j}, g′ �i g if and only if

p1ui (wi (1) + gi (1)) + p2ui (wi (2) + gi (2))

< p1ui (wi (1) + g′i (1)) + p2ui (wi (2) + g′i (1))

Note that in the expression in the RHS, agent i receives g′i (1) in both states since the

signal is manipulated by j. For i = j, g′ �i g if and only if:

p1ui (wi (1) + gi (1)) + p2ui (wi (2) + gi (2))

< p1ui (wi (1) + g′i (1)) + p2ui (wi (2) + g′i (1)− c)

Note that the manipulation cost c is taken into account only in state 2, when j needs

to manipulate the signal.

In the model, there are four possible types of agents: manipulators or non-manipulators
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with positive or negative initial exposure. The following richness assumption guaran-

tees that the economy is diverse in the sense that there exists at least one agent of each

type.

Definition 1 We say that the economy satisfies richness if there are two agents i, i′ ∈
M such that Wi > 0 > Wi′ and two agents j, j′ 6∈M such that Wj > 0 > Wj′.

Note that richness implies that |I| > 3. Moreover, richness rules out purely aggregate

shocks (see, e.g., Example 1). In Section 5 we relax the richness assumption to account

for purely aggregate shocks and analyze the case of |I| = 3.

3 Analysis

3.1 Constrained efficiency

Constrained efficiency is the notion of efficiency that we use throughout the paper.

We use the term constrained to indicate that the notion of efficiency is based on the

agents’ indirect preferences that take manipulations into account.

Definition 2 A contract g is constrained-efficient if it is IR and there exists no other

contract g′ such that g′ �i g for some i ∈ I and g′ �i g for all i ∈ I.

We begin our analysis with a characterization of constrained-efficient contracts.

The following simple result establishes that a contract g is IR only if it is IC. Note that

proofs that do not appear in the main text are to be found in Appendix C.

Claim 1 Suppose g is not IC. Then, g is not IR.

Corollary 1 A contract is constrained-efficient only if it is IC.

The agents’ primary goal is to reduce their exposure to the state of nature. There-

fore, when c is relatively large, manipulation is irrelevant and the model collapses to

a conventional exchange economy. The following non-triviality condition guarantees

that the intersection between the set of Pareto-efficient contracts (in a conventional

risk-sharing economy) and the set of constrained-efficient contracts is empty. That is,

the agents’ ability to manipulate the signal precludes Pareto-optimal risk-sharing.
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Definition 3 An economy is said to satisfy non-triviality if there exist two agents

i, j ∈M such that Wi > c and −Wj > c.

Claim 2 Suppose that the economy satisfies non-triviality. Then, the intersection be-

tween the set of Pareto-efficient contracts (i.e., the set of constrained-efficient contracts

when M = ∅) and the set of constrained-efficient contracts (when M 6= ∅) is empty.

We now establish another property of constrained-efficient contracts in economies

that satisfy richness and non-triviality.

Proposition 1 Suppose that the economy satisfies richness and non-triviality. Then,

in every constrained-efficient contract g there is an agent i ∈M such that |Ri (g)| = c

and an agent j 6∈M such that sign (Rj (g)) = sign (Ri (g)).

Proof. In a constrained-efficient contract g, if there are two agents i, j such that

Wi + Ri (g) > 0 > Wj +Rj (g), then Ri (g) = −c or Rj (g) = c. Otherwise, there is

a contract bij such that bij (1) > 0 > bij (2) and its addition to g makes both i and

j better off without violating their incentive constraints. The assumption that the

economy satisfies non-triviality implies that in any constrained-efficient contract there

is an agent i ∈ M such that |Ri (g)| = c. Otherwise, there are two agents m,m′ ∈ M
such that |Rm (g)| , |Rm′ (g)| < c, and Wm +Rm (g) < 0 < Wm′ +Rm′ (g).

Assume without loss of generality that there is an agentm ∈M such that−Rm (g) =

gm (1)−gm (2) = c. If there exists an agent j 6∈M such that Rj (g) < 0, the proposition

is proven. Assume that this is not the case. By richness, there are two agents i, i′ 6∈M
such that Wi < 0 < Wi′ . By assumption Ri′ (g) ≥ 0. Therefore, Wi′ + Ri′ (g) > 0.

By non-triviality, there is an agent h ∈ M such that Wh = wh (2) − wh (1) < −c.
By IR, Wh + Rh (g) < 0. Since Wi′ + Ri′ (g) > 0, constrained-efficiency implies that

Rh (g) = c. Since i, i′ 6∈ M , and Wi′ + Ri′ (g) > 0, constrained efficiency of g implies

that Wi +Ri (g) ≥ 0. It follows that Ri (g) > 0 and Rh (g) = c.

Equipped with these characteristics of constrained-efficient contracts, we now ana-

lyze decentralized risk-sharing.

3.2 Pairwise stability

In this subsection, the instability that follows from the agents’ ability to write bilateral

side-contracts is displayed. We view a multilateral contract g as stable if there exists

no pair of agents who are better off writing a new bilateral contract (without having to

withdraw from g). This notion of stability is inspired by Jackson and Wolinsky (1996).
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Definition 4 A contract g is pairwise stable if there exists no contract bij such that

g + bij �i g and g + bij �j g.

Note that in Jackson and Wolinsky’s notion of pairwise stability, a pair of agents is

either connected to each other or not. That is, the conventional definition of pairwise

stability refers to binary links. The present notion of stability is different from that of

Jackson and Wolinsky since here bilateral contracts are vectors that specify budget-

balanced transfers between contracting agents.

The following proposition establishes that IR pairwise stable contracts do not exist

in economies that satisfy non-triviality and richness. In particular, in such economies,

there exists no contract g that is both constrained-efficient and pairwise stable.

Proposition 2 Suppose that non-triviality and richness are satisfied. There exists no

multilateral contract g that is both IR and pairwise stable.

Proof. Consider an arbitrary contract g and distinguish between two different cases:

either g is constrained-efficient or not. Suppose g is constrained-efficient. By Propo-

sition 1, there is an agent i ∈ M such that |Ri (g)| = c and an agent j 6∈ M such

that sign (Rj (g)) = sign (Ri (g)). Assume without loss of generality that Ri (g) = c.

Consider a contract bij such that bij (2) = ε > 0 = bij (1), that is, a contract in which

agent j pays agent i an amount ε if and only if the signal is realized to be 1. Note that

Ri (g + bij) = c + ε > c. It follows that PM (g + bij) = {i} and y (g + bij, θ) = 2 for

each θ ∈ {1, 2}. Since Rj (g) > 0, if ε is sufficiently small, g+ bij �j g and g+ bij �i g.

To complete the proof we need to show that if g is not constrained-efficient, it cannot

be both IR and pairwise stable. Assume by negation that g is IR, pairwise stable, and

not constrained-efficient. By non-triviality, there are two agents i,j ∈ M such that

Wi > c > −c > Wj. The assumption that g is IR implies that |Ri (g)| , |Rj (g)| ≤ c.

Pairwise stability implies that either Ri (g) = −c or Rj (g) = c. Otherwise, there

is a contract between i and j that makes both of them better off without violating

their incentive constraints. Assume without loss of generality that Ri (g) = −c. If

there exists an agent k such that Rk (g) < 0, then there is a contract bik such that

bik (1) > 0 = bik (2) that violates the pairwise stability of g. That is, there is a contract

that violates the pairwise stability of g, in which k incentivizes i to manipulate the

signal from 2 to 1 by paying him a small amount if and only if the signal is realized to

be 1. It follows that Rh (g) ≥ 0 for all h ∈ I/ {i}.
By richness, there are two agents k, k′ 6∈M such that Wk > 0 > Wk′ . Since Rk (g) ≥

0, Wk + Rk (g) > 0. Since k, k′ 6∈ M , the pairwise stability of g and the inequality
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Wk + Rk (g) > 0 imply that Wk′ + Rk′ (g) ≥ 0. Thus, Rk′ (g) > 0. Since Wj < −c, IR

implies that Wj +Rj (g) < 0. Either there exists a legitimate coinsurance contract bjk

between j and k that violates the pairwise stability of g, or Rj (g) = c. Since Rj (g) = c

and Rk′ (g) > 0, there exists a contract bjk′ such that bjk′ (2) = ε > 0 = bjk′ (1) (that

is, a contract in which k′ incentivizes j to manipulate the signal from 1 to 2 by paying

him an amount ε if and only if the signal is realized to be 2) that violates the pairwise

stability of g by making both j and k′ better off.

The proof of Proposition 2 shows that when the economy satisfies non-triviality,

then in a pairwise stable contract there is always at least one agent i ∈ M who is

indifferent between manipulating the signal and not doing so. This implies that any

agent j ∈ I such that sign (Ri (g)) = sign (Rj (g)) has the incentive to “break” i’s

indifference by paying him a small ε > 0 in one of the signal’s realizations.

3.3 Weak stability

Pairwise stability makes a strong implicit assumption: when a pair of agents (i, j)

deviates by adding a contract bij, each of the deviating agents holds a belief that there

are no other deviations that will make him worse off if he agrees to bij. This assumption

follows from the fact that pairwise stability considers the addition of one contract at

a time. This is particularly restrictive since the attractiveness of a contract (and, in

particular, of taking part in a deviation) is affected by the existence of side-contracts

between other agents. This is because the existence of these additional side-contracts

may create an incentive to manipulate the signal for some of these agents. An agent

i who takes part in a deviation from the prevailing multilateral contract may suspect

that his counter-party to the deviation has an ulterior motive such as additional side-

contracts (with other agents) that make i worse off if he agrees to take part in this

deviation. In this subsection we develop a stability notion that relaxes this implicit

assumption.

Let us consider a possible deviation bij. It can be viewed as if it were initiated

by one of the two agents, say, i. The question that naturally arises is what are j’s

beliefs about other contemporaneous deviations that i might have initiated. Pairwise

stability includes an implicit assumption that j believes that i did not initiate any

contemporaneous deviation bik that makes j worse off if he agrees to i’s offer. Before

we relax this assumption, we present an example in which healthy suspicion toward i’s

motivation is relevant.

Example 2 Let I = {1, ..., 8}, M = {1, 2, 3, 6, 7, 8}, and c < 1. The following table
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summarizes the agents’ initial exposure and the coverage received in a contract g.

agent 1 2 3 4 5 6 7 8

Wi 1 1 1 1 −1 −1 −1 −1

Ri (g) −c −c −c 0 0 c c c

We present two deviations that violate the pairwise stability of g. The first deviation

decreases the exposure (in absolute value) of agents 4 and 5 (i.e., it is a legitimate

co-insurance contract). We show that when this deviation is initiated by agent 5 (4),

agent 4 (5) has reason to suspect that agent 5 (4) signed an additional contract with a

third agent k ∈ I/ {4, 5}, thereby incentivizing k to manipulate the signal.

Since W4 > 0 > W5, there is a contract b45, such that b45 (1) > 0 > b45 (2), that

reduces both agent 4’s and agent 5’s ex-post exposure (in absolute value) and is profitable

to both of them. Suppose agent 4 initiates such a deviation b45. Agent 5 might suspect

that agent 4 has initiated another deviation b34 such that b34 (1) = ε > 0 = b34 (2), that

is, a deviation in which agent 4 incentivizes agent 3 to manipulate the signal from 2 to

1 by paying him an ε > 0 if and only if the realized signal is 1. If ε is sufficiently small,

then g+ b34 + b45 �4 g+ b45 and g+ b34 + b45 �4 g+ b34. Agreeing to b45 exposes agent

5 to a negative externality imposed by agent 3’s manipulation of the signal (given b34).

Note that g + b34 �5 g + b34 + b45 (that is, agent 5 is worse off agreeing to b45).

We now present a second deviation in which agents 6 and 7 write a contract with

the intention that agent 7 will manipulate the signal. Agent 7 suspects that agent 6

has an additional side-contract with agent 8. The conjectured contract between agents

6 and 8 incentivizes agent 6 to manipulate the signal himself. Agent 7’s suspicion is

that agent 6 is using their side-contract to make agent 7 manipulate the signal and pay

the manipulation cost instead of agent 6 having to manipulate the signal and pay the

cost himself.

Specifically, consider a deviation b76 initiated by agent 6, such that b76 (2) = ε >

0 = b76 (1). That is, agent 6 makes an offer to agent 7 that is supposed to break 7’s

indifference and incentivize him to manipulate the signal from 1 to 2. Agent 7 may

suspect that agent 6 also initiated a deviation b68 such that b68 (y) = b76 (y) for each

y ∈ {1, 2}. That is, agent 6 made an offer to agent 8 to break his own indifference

such that R6 (g + b68) > c and y (g + b68, θ) = 2 for each θ ∈ {1, 2}. If ε is small, then
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p1u6 (w6 (1) + g6 (2) + ε− c) + p2u6 (w6 (2) + g6 (2) + ε)

< p1u6 (w6 (1) + g6 (2)) + p2u6 (w6 (2) + g6 (2))

The LHS is agent 6’s payoff under g + b68 and the RHS is his payoff under g + b76 +

b68. Since g + b76 + b68 �6 g + b68, the observed contract b76 can be rationalized by

the conjectured contract b68. Note that the realized signal is identical in both cases.

However, the identity of the agent who pays for the manipulation is different.

Let us study agent 7’s considerations. Observe that y (g + b68, θ) = 2 in both states

since 6 manipulates the signal. Agreeing to agent 6’s offer does not change the realiza-

tion of the signal (in both states) since R7 (g + b76) > R6 (g + b68 + b76) = c. However,

it changes the identity of the agent who has to pay for the manipulation in state 1.

Agreeing to b76 makes agent 7 pay the cost of manipulation instead of agent 6 paying

this cost. Since ε is assumed to be small relative to c, agent 7 is worse off agreeing to

agent 6’s offer.

We now present a notion of stability that takes into account the suspicion motive

presented above. Our notion of stability involves suspicion towards agents who break

the norm and initiate deviations from the prevailing multilateral contract. Given a

contract g and an offer bij made by i, βj (bij, g) = (bik)k∈I/{i,j} denotes agent j’s belief

about the other offers that i has made to other agents (which have been accepted).

We assume that agent j cannot observe deviations that do not include him. If g +

βj (bij, g) + bij ≺j g+ βj (bij, g), then j has an incentive to reject i’s offer. In this case,

we say that the deviation bij is blocked by βj (bij, g). We now elaborate on the beliefs

that agent j is allowed to hold.

Definition 5 A belief βj (bij, g) is consistent if g + βj (bij, g) + bij �i g + βj (bij, g).

Agent j’s belief about the other contracts signed by i, βj (bij, g), is consistent with

the observed contract bij if the addition of bij to g + βi (bij, g) makes agent i better

off. Note that a consistent belief may not exist. For example, agent j has no belief

that is consistent with a contract bij in which i pays j the same positive amount in

both realizations of the signal. These cases are of lesser interest since agent i, being

rational, never makes an offer that cannot be rationalized.

Definition 6 A contract g is weakly stable if, for each i ∈ I and contract bij such

that g + bij �i g, there exists a consistent belief βj (bij, g) such that g + βj (bij, g) �j
g + βj (bij, g) + bij.
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Observe that a deviation consists of a contract and an agent who initiates it. The

same contract is treated differently when the identity of its initiator is different. It can

be the case that a contract bij is blocked by a belief βj (bij, g) but is not blocked by

any belief βi (bij, g). That is, j (i) has an (no) incentive to reject bij when it is offered

by i (j). Weak stability of g requires that the side-contract bij is blocked by a belief

βi (bij, g) and by a belief βj (bij, g).

Let us consider the logic of weak stability. An agent j who receives an offer from

agent i needs to form some belief about other offers that i might have initiated. Let

us think of these offers as i’s type. Consistency implies that j is restricted to holding

a belief that i’s type is one that may potentially benefit from such an offer. A contract

g is weakly stable if it is a best response for j to reject i’s offer, given the restriction

on j’s beliefs. If this is the case, then it is a best response for i not to initiate the

deviation in the first place.

Cho and Kreps (1987) provide an intuitive criterion to determine the stability of

equilibria in signaling games (sender-receiver games) based on restrictions on out-of-

equilibrium beliefs. Our stability concept employs the same logic. The intuitive cri-

terion consists of two steps. The first step restricts the beliefs of a receiver of an

out-of-equilibrium message; he must hold a belief that the message sender’s type is

one that can benefit from the message. The second requirement for an equilibrium

to survive the intuitive criterion is that, under this restriction on the receiver’s be-

liefs, he have some best response to this belief that makes it not beneficial to send the

out-of-equilibrium message in the first place.

Note that an agent i who receives an offer to deviate from the prevailing contract

forms beliefs that take into account the initiator of the deviation’s incentives, and

not the incentives of other agents. If i’s beliefs are restricted by the other agents’

considerations (for example, if he is not allowed to believe that agent k agreed to

a contract that can render k worse off), then our ability to disqualify deviations is

restricted. Such a concept would be stronger than weak stability. Since our main

results are negative, the weaker our stability concept, the more persuasive they are.

Therefore, we use a relatively weak concept and view the positive results as an upper

bound for the level of insurance that is attainable.

The stability notion does not include the possibility of canceling a signed contract.

Allowing the agents to cancel previously signed contracts allows for more deviations

than the present stability notion. However, it does not add new beliefs that can dis-

qualify deviations. To see that, consider agent j who receives an offer to sign a bilateral

contract with agent i and rejects it based on a conjecture that i contemporaneously
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canceled a contract he previously signed with k. Since weak stability does not im-

pose any restriction on j’s beliefs about agent k’s considerations, there is a bilateral

contract between i and k that can be conjectured by j and have the same effect as

the cancellation of the contract between i and k. We do not allow for cancellation of

contracts since it does not change the main results and we prefer our stability notion

to be weaker in order to emphasize the negative results.

3.3.1 Existence

We now establish the existence of weakly stable contracts. The existence proof relies

on the following lemma.

Lemma 1 Let g be an IR contract. Suppose that the economy satisfies richness and

consider a contract bij such that bij (y) > 0 for some y ∈ {1, 2}, offered by i ∈ I. There

exists a consistent belief βj (bij, g) that blocks bij.

Proof. Let g be an arbitrary IR contract. Without loss of generality, consider a

contract bij, offered by i, such that bij (2) > 0, that is, a contract in which j pays

i a strictly positive amount if the signal is realized to be 2. Suppose i ∈ M . Fix a

belief βj (bij, g) = bik such that k 6∈M . If Ri (bik) = bik (2)− bik (1) is sufficiently high,

y (g + bik + bij, θ) = 2 for each θ ∈ {1, 2}. Since bij (2) > 0, g + bik + bij �i g + bik. It

follows that βj (bij, g) is consistent and g + βj (bij, g) + bij ≺j g + βj (bij, g).

To complete the proof, suppose that i 6∈M . By richness, M/ {j} is not empty. Fix

a belief βj (bij, g) = bik, k ∈M/ {j}. For a sufficiently large Rk (bik) = bik (1)− bik (2),

Rk (g + bik) > max {|Rj (g + bij)| , c} such that y (g + bij + bik, θ) = 2 for each θ ∈
{1, 2}. Since bij (2) > 0, βj (bij, g) is consistent and g+βj (bij, g) + bij ≺j g+βj (bij, g).

Lemma 1 shows that agent j rejects any contract in which he is supposed to pay

agent i in one of the realizations. As a result, bilateral side-contracts signed with the

intention that the contracting parties co-insure each other cannot undermine the weak

stability of a multilateral contract. This is because in any co-insurance contract bij,

it must be that bij (2) > 0 > bij (1) or bij (1) > 0 > bij (2). The only deviations that

can violate the weak stability of a contract g are those that incentivize one of the

deviating counter-parties to manipulate the signal. Moreover, these deviations include

one agent j who pays his counter-party, agent i, a positive amount in both of the

signal’s realizations (i.e., bij (2) , bij (1) ≥ 0).

Lemma 1 demonstrates the permissiveness of weak stability: there are no restric-

tions on j’s beliefs about k’s considerations. Moreover, there are no restrictions about
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j’s beliefs about i’s considerations w.r.t. bik. A similar result could be obtained even

if one imposes one of these two restrictions.

Proposition 3 Consider an economy that satisfies richness. There exists a weakly

stable contract g.

Proof. We consider a degenerate contract g and show that it is weakly stable. We

partition the possible deviations that an arbitrary agent i ∈ I may initiate into two:

deviations bij such that bij (y) > 0 for some y ∈ {1, 2} and deviations such that

bij (y) ≤ 0 for each y ∈ {1, 2}. Since gi (1) = gi (2) = 0, we do not need to worry about

deviations of the latter type: for every such offer bij, i receives less than ui (wi (θ)) in

each state θ ∈ {1, 2}. By Lemma 1, deviations of the former type are blocked by some

consistent belief.

Note that Proposition 3 relies only on the fact that |M | > 1 and that there exists

an agent i 6∈ M . It will be shown that existence of weakly stable contracts for the

special case of I = M follows from the positive result of Proposition 5.

3.3.2 Main results

We now present the main negative result of the paper. It establishes that when the

economy satisfies non-triviality and richness, it is impossible to write a multilateral

risk-sharing contract that is both weakly stable and constrained-efficient. The following

lemma is the cornerstone of the proof. It highlights one deviation that can never be

blocked by a consistent belief.

Lemma 2 Consider an IR contract g, and two agents m ∈ M , i 6∈ M . Every devia-

tion bmi such that bmi (2), bmi (1) ≥ 0, and g+ bmi �i g is not blocked by any consistent

belief βm (bmi, g).

Proof. Let g be an arbitrary multilateral IR contract. Consider a bilateral contract

bmi such that bmi (2), bmi (1) ≥ 0, and g + bmi �i g, that is, a contract in which i pays

m a positive amount in both realizations. Since g is IR and bmi (2) , bmi (1) ≥ 0, the

fact that g + bmi �i g implies that bmi must incentivize m to manipulate the signal. It

follows that |Rm (g + bmi)| > c.

Assume, without loss of generality, that Rm (g + bmi) > c and consider an arbitrary

consistent belief βm (bmi, g). We now show that βm (bmi, g) does not block bmi. Since

bmi (2) , bmi (1) ≥ 0, consistency of βm (bmi, g) implies that m manipulates the signal
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given the contract g + βm (bmi, g) + bmi so that y (g + βm (bmi, g) + bmi, θ) = 2 for each

θ ∈ {1, 2}. Also, consistency implies that the contract bmi changes the realized signal in

one of the states. Therefore, y (g + βm (bmi, g) , 1) = 1. Agent m is not worse off in state

2 since he does not incur any cost and y (g + βm (bmi, g) + bmi, 2) = 2. In state 1 agent

m receives a payoff of um (wi (1) + gm (2) + bmi (2)− c) > um (wi (1) + gm (1) + bmi (1)) >

um (wi (1) + gm (1)). Therefore, g + βm (bmi, g) + bmi �m g + βm (bmi, g).

We now present the main result of the paper. It utilizes the characterization of

constrained-efficient contracts obtained in Proposition 1 and shows that such a contract

cannot be weakly stable.

Proposition 4 Consider an economy that satisfies richness and non-triviality. There

exists no contract that is both constrained-efficient and weakly stable.

Proof. By Proposition 1, richness and non-triviality imply that in every constrained-

efficient contract g there is an agent i ∈M such that |Ri (g)| = |gi (2)− gi (1)| = c and

an agent j 6∈ M such that sign (Rj (g)) = sign (Ri (g)). Without loss of generality,

assume that Ri (g) = c. Consider a contract bij such that bij (2) > bij (1) > 0. This

contracts violates i’s incentive constraint and incentivizes him to manipulate the signal

from 1 to 2. If bij (2) is sufficiently small, g + bij �j g. By Lemma 2, there exists no

consistent belief βi (bij, g) such that g + βi (bij, g) + bij ≺i g + βi (bij, g).

Proposition 4 establishes that even under the weak restrictions imposed by weak

stability, multilateral trade further constrains the agents’ ability to share risk. What

if the economy does not satisfy richness? In particular, it is interesting to study an

economy in which all agents are able to manipulate the signal. Proposition 5 provides

us with the answer to this question, which is the main positive result of the paper. The

proposition follows directly from the following lemma.

Lemma 3 Suppose that n > 3 and |M | ≥ 3. Let g be an IR contract and consider two

agents m ∈M and m′ ∈M . Any deviation bm′m such that g+ bm′m �m g is blocked by

a consistent belief βm′ (bm′m, g).

The next proposition follows directly from Lemma 3

Proposition 5 Suppose that n > 3 and M = I. Each constrained-efficient contract g

is weakly stable.

Note that the proposition relies on the assumption that n > 3. The result is true

for n = 3 as well. However, the proof is different. We present it in the discussion in

Section 5.
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The following corollary characterizes weak stability by summarizing the results

obtained in Lemmata 1 ,2 , and 3. We will utilize it in the applications section.

Corollary 2 Let n > 3, |M | > 2, and g be an arbitrary IR contract. Any contract

bmi such that m ∈ M , i ∈ I, bmi (1) , bmi (2) ≥ 0, and g + bmi �i g violates the weak

stability of g. Any other contract does not violate the weak stability of g.

Proof. The above-described deviation violates the weak stability of g by Lemma 2.

By Lemma 3, any deviation that includes two members of M cannot undermine the

weak stability of g. When M 6= I there must be at least one agent i 6∈ M . Since

the only use that Lemma 1 makes of richness is the fact that it implies the existence

of an agent i 6∈ M , we can use the lemma to disqualify every deviation bij such that

bij (2) > 0 > bij (1).

The fact that a particular weakly stable contract is not constrained-efficient does

not imply that all of the agents are underinsured (relative to the coverage they obtain

in a constrained-efficient contract). This is demonstrated in the following example.

Example 3 Let I = {1, ..., 6}, c = 0.5, p1 = 0.5, and M = {1, ..., 4}. Suppose that

ui (x) = − exp (−αx) for all i ∈ I. The following table summarizes the agents’ initial

exposure:

agent 1 2 3 4 5 6

Wi 1 1 1 −1 −1 −1

Every constrained-efficient contract g provides the following coverage:

agent 1 2 3 4 5 6

Ri (g) −0.5 −0.5 −0.5 0.5 0.5 0.5
.

To see that, observe agent i’s marginal rate of substitution between consumption in

both states and note that it depends only on Wi + Ri (g). Therefore, if Wi + Ri (g) 6=
Wj +Rj (g), either |Ri (g)| = c or |Rj (g)| = c. By Corollary 2, g is not weakly stable.

We now demonstrate the existence of a contract that is weakly stable, not constrained-

efficient, and under which agents 5 and 6 receive more coverage than they receive in g:
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agent 1 2 3 4 5 6

Ri (g
′) −0.5 −0.5 −0.5 0 0.75 0.75

Let us show that g′ is weakly stable. By Corollary 2, contracts that include two agents

i, j ∈ {1, 2, 3, 4} cannot undermine the weak stability of g′. A deviation b56 cannot

undermine the weak stability of g′ since W5 + R5 (g′) = W6 + R6 (g′) such that the

agents have no mutual insurance motive and they cannot manipulate the signal. By

Corollary 2, deviations bij such that bij (1) > 0 > bij (2) do not undermine the weak

stability of g′ for any i, j ∈ {1, ..., 6}. Also, any contract in which agent 5 (6) pays

agent 4 b45 (2) > 0.5 (b46 (2) > 0.5) with the intention that agent 4 will manipulate the

signal, is not beneficial for agent 5 (6). It follows that g′ is weakly stable.

In the example, agents 1, 2, and 3 can provide a total coverage of 1.5 dollars. The

fact that the agents can add side-contracts to g′ constrains agent 4’s ability to insure

himself. Roughly speaking, agent 5 and agent 6 benefit from this as they obtain more

insurance w.r.t. the level of insurance they obtain via g. Note that the sum of the

agents’ ex-post exposure (in absolute value) in g′ is identical to their ex-post exposure

in g. In general (under any assumption about the agents’ preferences), the summation

of the agents’ ex-post exposure is minimized in constrained-efficient contracts, but there

may be other contracts (as shown in the example) that induce the same summation.

4 Applications

4.1 Re-insurance

We study a re-insurance market in which primary insurers who are exposed to a neg-

ative shock transfer risk to an infinite group of re-insurers. The risk-sharing contracts

are conditioned on a state-dependent signal such as a policy maker’s action or an

industry-loss index. One possible interpretation of manipulation in this section is lob-

bying in order to influence some policy maker’s action that the firms contract upon.

For example, a deceleration on a disaster. The literature on lobbying (for a textbook

treatment see Grossman and Helpman, 2001) with complete information assumes that

the agents play a contribution game (Bernheim and Whinston, 1986). Using such a

game as a manipulation game would change the present paper’s specification, but the

results obtained in this section would not change.
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Our economy is composed of two disjoint sets: a set of insurers L and a set of re-

insurers E. We assume that M ⊆ L. That is, only the insurers are able to manipulate

the signal. We assume that all of the insurers are exposed to the same shock: for each

i ∈ L, wi (1) = wh > wl = wi (2), w := wh − wl. We further assume that ui = u for

each i ∈ L and that the cardinality of E is large relative to that of L such that the

members of E can absorb all the risk in the economy. We study the limit case of |E||L|
tends to infinity. To avoid frictions arising from the discreteness of L, we assume that

there are many insurers and denote the share of manipulators |M | / |L| by α. For ease

of exposition, we assume that the re-insurers are risk-neutral.

We are interested in the level of coverage
∑

i∈LRi (g) that the primary insurers

can attain. In a constrained-efficient contract each m ∈ M receives a coverage of c

dollars and each i ∈ L/M receives a coverage of w dollars. The average coverage is

αc+ (1− α)w. By Corollary 2, if α ∈ (0, 1), then there exists no contract that is both

constrained-efficient and weakly stable. This is because in such a contract each m ∈M
is indifferent to manipulating the signal and each i ∈ L/M receives strictly positive

coverage. As a result, in IR weakly stable contracts, the agents are underinsured.

We are interested in the magnitude of the effect (on the level of attainable coverage)

generated by the ability to write side-contracts. In particular, we are interested in the

case where c
w

is close to 1. That is, manipulation becomes costly and constrained-

efficient risk-sharing is close to full insurance. We wish to find out whether the negative

effect of the ability to write side-contracts vanishes in this case.

We restrict out attention to fair insurance contracts. A contract g is fair if p1gi (1)+

p2gi (2) = 0 for each5 i ∈ I. This enables us to study the maximal coverage attainable

for primary insurers who face re-insurers in a competitive setup. Note that constrained-

efficient insurance is attainable using contracts that provide fair insurance. Technically,

the restriction to fair insurance contracts simplifies the analysis as agent i’s willingness

to pay in order to guarantee his preferred realization (of the signal) is pinned down by

his coverage Ri (g). An equivalent way of simplifying the analysis is to assume constant

absolute risk-aversion preferences. Since we are interested in the level of coverage as

an approximation to welfare, we do not allow for overinsurance. Therefore, we restrict

ourselves to contracts g such that Ri (g) ≤ w for each i ∈ L.

We start our analysis by characterizing the maximal average coverage that the

primary insurers can attain using a weakly stable fair contract as a function of the

share of manipulators α.

5We can obtain the same results by restricting attention to contracts in which p1gi (1)+p2gi (2) < 0
for each i such that gi (1) < gi (2), that is, contracts in which agents who are covered pay a premium.
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Proposition 6 Suppose M ≥ 3. There exists an α∗ such that the maximal average

coverage that can be obtained via a weakly stable contract that provides fair insurance

is increasing (decreasing) in α for each α > α∗ (α < α∗).

Proof. By Corollary 2, the only deviations with the potential to undermine the weak

stability of g are those with one agent i 6∈M and one agent m ∈M . In these deviations

agent i pays agent m a positive amount in both realizations and incentivizes him to

manipulate the signal. Consider an arbitrary IR contract g. Let us denote agent i’s

willingness to pay in order to guarantee his preferred realization y by xyi (g). Formally,

p1u (wh + gi (1)) + p2u (wl + gi (2)) (1)

= p1u (wh + gi (y)− xyi (g)) + p2u (wl + gi (y)− xyi (g))

Each side-contract bmi in which agent i pays agent m zy < xyi (g) when y is realized

(and z ∈ [0, zy) otherwise) such that m’s incentive constraint is violated, breaks the

weak stability of g. By Corollary 2, these are the only side-contracts that violate the

weak stability of g. By the assumption that the E is large, the coverage obtained in

g (by the primary insurers) can be divided between the re-insurers such that Ri (g) is

arbitrarily small for each i ∈ E. As a result, xyi (g) can be set to be sufficiently small to

prevent deviations in which i ∈ E pays m ∈M in order to incentivize m to manipulate

the signal.

We now write the simplified maximization problem.

max
gi(1),gi(2)|i∈L

∑
i∈L

gi (2)− gi (1) (2)

s.t

c ≥ max
m∈M

{gm (2)− gm (1)}+ max
i∈L/M

x2i (g)

w ≥ max
i∈L
{gi (2)− gi (1)}

First, note that we omit the IR constraints from the description of the problem. Our

restriction to fair insurance contracts implies that as long as Ri (g) ∈ [0, w] and g is IC,

agent i ∈ L is better off signing this contract. The first constraint guarantees the weak

stability of g. Observe that it must be binding. Otherwise, there is an agent m ∈ M
such that gm (2) − gm (1) < c < w who can receive more coverage without violating

this constraint. Moreover, at the optimum, gm (2)− gm (1) = gm′ (2)− gm′ (1) for each

m,m′ ∈ M . Otherwise, one can either increase m’s coverage without violating the
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constraint or one can increase m′’s coverage without violating the constraint. Denote

by RM the coverage received by each m ∈ M . The same argument can be applied

to show that gi (2) − gi (1) = gi′ (2) − gi′ (1) for each i, i′ ∈ L/M . Denote by RL the

coverage received by each i ∈ L/M .

We now study how RL changes with RM . Consider agent i ∈ L/M . Recall that

agent i receives fair insurance. Plugging fair insurance into equality (1), using the

implicit function theorem, and deriving by x2i (g), we obtain that gi (2) − gi (1) is

concave in x2i (g) if and only if

(u′ (wh + gi (1))− u′ (wl + gi (2)))
[
p1u

′′ (wh + gi (2)− x2i (g)
)

+ p2u
′′ (wl + gi (2)− x2i (g)

)]
≥ 0

The above inequality holds since u is concave and gi (2)−gi (1) ≤ w. If gi (2)−gi (1) <

w, it holds with strict inequality. Since x2i (g) is decreasing and linear in RM , RL is

decreasing and convex in RM . Since we maximize a linear combination of RL and RM

subject to a convex constraint, the solution to the problem is unique and RM is weakly

increasing in α. Denote the solutions to the maximization problem for a specific α

by Rα
M and Rα

L. If Rα
M > Rα

L (Rα
M < Rα

L), then increasing (decreasing) α can only

increase the maximal level of coverage that is attainable. By continuity, there exists

an α ∈ (0, 1) for which Rα
M > Rα

L (Rα
M < Rα

L).

Proposition 6 shows that the maximal coverage that can be obtained using fair

insurance contracts is U-shaped in the number of agents who can manipulate the

signal. It implies that when it is easier to manipulate the signal in the sense that more

agents are capable of doing so, the level of coverage may increase. When it is easier to

manipulate the signal in the sense that c is close to w, the level of coverage increases.

This is a result of the first constraint of Problem (2). In the sequel we shall show that

the level of coverage is bounded away from full insurance when c approaches w. That

is, the negative effect of the ability to add side-contracts on multilateral risk-sharing

does not disappear when constrained-efficient coverage is close to full coverage.

Proposition 6 utilizes the fact that xyi (g) is pinned down by Ri (g). This is a result

of our assumption that the re-insurance market is competitive such that p1gi (1) +

p2gi (2) = 0. In general, xi (g) is not pinned down by Ri (g) because absolute risk

aversion affects the agents’ willingness to pay for manipulation. As a result, RL is a

function of both RM and α. Under constant absolute risk-aversion preferences, xyi (g)

is pinned down by Ri (g). In this case, the maximal average coverage is U-shaped in

α.
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Figure 1: Problem (2) for a given α.

We now illustrate the result obtained in Proposition 6 by solving for the maximal

average coverage that the agents can obtain facing a competitive re-insurance market

for a specific set of parameters. We assume that ui (z) = log (z) for each i ∈ L and

that the two states are equally likely. For ease of exposition, we assume that wl = 0,

wh = w. In Proposition 6 we showed that it is without loss of generality to restrict

attention to contracts in which each i ∈ L/M (i ∈ M) receives the same payoffs RL

and RM . Plugging the parameters into agent i’s willingness to pay for manipulation of

the signal that is given in (1):

x2i (g) =
1

2

(
RL + w −

√
w2 −R2

L + 2wRL

)
At the optimum,

c = RM +
1

2

(
RL + w −

√
w2 −R2

L + 2wRL

)
(3)

Plugging expression (3) into the maximization problem given in (2), we obtain the

following problem (note that we need to make sure that RM ≥ 0 because of IR).

max
RL

α

(
c− 1

2

(
RL + w −

√
w2 −R2

L + 2wRL

))
+ (1− α)RL

s.t

RL ≤ w

RM ∈ [0, c]
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The first-order condition of the above problem is

−1

2
α +

1

2
α

w −RL√
w2 −R2

L + 2wRL

+ (1− α) = 0

Rearranging, in an internal solution,

RL = w

1−

√√√√ 2
(
3− 2

α

)2
1 +

(
3− 2

α

)2


Define Λ := 1−

√(
2(3− 2

α)
2

1+(3− 2
α)

2

)
. In an internal solution, the maximal average coverage

is given by

α

(
c− 1

2
w
(

Λ + 1−
√

1− Λ2 + 2Λ
))

+ (1− α)wΛ

We now check whether RL ≤ w and RM ≥ 0, that is, whether the problem has

a corner solution. It is easy to see that RL ≤ w if and only if α ≤ 2
3
. If c

w
≥

1
2

(
Λ + 1−

√
1 + Λ2 + 2Λ

)
, then6 we have an internal solution for α ≥ 2

3
.

For α < 2
3

and c
w
≥ 2−

√
2

2
, non-manipulators are fully insured. Substituting RL = w

into constraint (3) we get that the maximal average coverage is

α

(
c− 1

2
w
(

2−
√

2
))

+ (1− α)w

If c
w
< 2−

√
2

2
and α < 2

3
, manipulators are not insured (that is RM = 0) and non-

manipulators receive coverage of c +
√

2wc− c2 each. The maximal average coverage

is

(1− α)
(
c+
√

2wc− c2
)

This is also the maximal average coverage in the case that α > 2
3

and c
w
≤ 1

2

(
Λ + 1−

√
1 + Λ2 + 2Λ

)
.

Note that when c
w

is low, then from the coverage maximization point of view, it

is ideal if the manipulators have “skin in the game”, that is, if RM < 0. This can

happen only when the fair insurance assumption is relaxed. Observe that there is a

trade off. Since w > 0 and the agents are risk-averse, non-manipulators must subsidize

this negative coverage. This is beneficial only when α is low since, in this case, there

are only a few manipulators to subsidize.

6Note that 1
2

(
Λ + 1−

√
1 + Λ2 + 2Λ

)
≤ 2−

√
2

2 .
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Figure 2: Attainable coverage for c
w = 0.75

Figure 3: Attainable coverage for c
w = 0.99

The second extreme case is the case where c
w

approaches 1. That is, it is relatively

hard to manipulate the signal. Observe that in this case the constrained-efficient level

of insurance αc + (1− α)w is close to full insurance. However, the maximal coverage

that the agents can attain in a weakly stable contract is bounded away from zero

for α < 1. For example, α = 0.5 (α = 0.85) implies a loss of 14.6 (13.4) percent

w.r.t. the constrained-efficient coverage. Figure 2 (3) illustrates the agents’ maximal

insurance coverage as a function of the number of potential manipulators for c = 0.75w

(c = 0.99w) and |L| = 100. It compares it to the constrained-efficient level of insurance.

4.2 A private shock

In this subsection we consider a case in which there is only one agent who is exposed

to a shock. We first assume that this agent is the only one who observes the shock’s
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realization. The story we have in mind is that of an agent who owns an asset that can

be damaged. The other agents are assumed to be insurance companies. The agents can

transfer risk between them using contracts that are conditioned on the insured agent’s

report. The cost of reporting that a shock occurred when it did not in fact occur (when

it occurred) is c (0). It represents the risk of getting caught lying. It is costless to

report that the shock has not been realized since, in this case, there is no inspection

by the insurance companies. This constitutes a relaxation of richness in two respects.

First, we assume that only one agent is exposed to the shock. Second, it is assumed

that this agent is the only one who can manipulate the signal. Let us summarize the

agents’ endowments (we assume that the negative shock is realized in state 2):

state/agent k 1 2 ... n− 1

1 w + z w1 w2 ... wn−1

2 w w1 w2 ... wn−1

In this case, the ability to write side-contracts does not restrict the agents’ ability to

share risk.

Claim 3 Each constrained-efficient contract is pairwise stable.

Proof. Let g be an arbitrary constrained-efficient contract. By IR, Rk (g) = gk (2) −
gk (1) ≥ 0. By the constrained efficiency of g, Ri (g) ≤ 0 for each I/ {k}. Otherwise,

there are two agents i, j ∈ I/ {k} such that Wi +Ri (g) > 0 > Wj +Rj (g). Moreover,

by the constrained efficiency of g, there exists no contract bij such that i, j ∈ I/ {k}
and g + bij �h g for each h ∈ {i, j}. Furthermore, by the constrained efficiency of g,

there exists no contract bik such that Rk (g + bik) ∈ [0, c] and g + bij �h g for each

h ∈ {i, k}.
It is left to verify that there is no deviation bik such that Rk (g + bik) 6∈ [0, c],

g + bik �i g, and g + bik �k g, that is, deviation that incentivizes k to manipulate

the signal. Since Ri (g) = gi (2) − gi (1) ≤ 0 for each i ∈ I/ {k} we can focus on

deviations bik that incentivize k to manipulate the signal from 2 to 1. Suppose that

there exists such a contract bik. By assumption, g + bik �i g and g + bik �k g. Since

Rj (g) ≤ 0 for each I/ {k, i}, g+ bik �j g for each j ∈ I/ {k, i}. Since g is constrained-

efficient, and g + bik �h g for each h ∈ I/ {k, i}, g + bik is IR and not degenerate.

However, Rk (g + bik) 6∈ [0, c], and so the signal is independent of the state, which is in

contradiction to IR of g.
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Corollary 3 Each constrained-efficient contract is weakly stable.

When there is only one agent k ∈ I who is exposed to a shock, a constrained-efficient

contract g must be such that sign (Rk (g)) 6= sign (Ri (g)) for all i ∈ I/ {k}. This fact

implies that we do not need to worry about the addition of contracts that violate k’s

incentive constraint. Since only k has the ability to manipulate the signal, no pair of

agents i, j ∈ I/ {k} can write a contract that incentivizes one of the contracting parties

to manipulate the signal. It follows that we do not need to worry about the addition

of contracts that impose an externality on third parties.

An additional interesting case is the one in which other agents also have the ability

to manipulate the signal. For example, if y is an appraisal, then the insurers may

also have the ability to bribe the appraiser. Under the assumption that agent k can

also manipulate the signal, the analysis is very similar to the case of n = |M | = 3,

which will be analyzed in Section 5. Roughly speaking, it must be that in every

constrained-efficient contract g,
∑

i∈I/{k} |Ri (g)| ≤ c. Therefore, there exists no side-

contract bij between i, j ∈ I/ {k} such that g + bij � g for both i and j. In this case,

every constrained-efficient contract is pairwise stable. If k 6∈ M , then the stability of

constrained-efficient contracts depends on the size of the shock and on the number of

agents who can manipulate the signal.

4.3 A joint venture

Each agent i ∈ I owns an equal share of a venture that is worth nh dollars in state

1 and nl dollars in state 2, l < h. Some of the agents are risk-averse while the

others are risk-neutral. Denote the set of risk-averse (risk-neutral) agents by L (E).

The venture’s actual performance is not verifiable. However, the agents can insure

each other via contracts contingent on y ∈ {1, 2}, which is a variable in the venture’s

financial reports.

We interpret M ⊆ I as the venture’s board of directors (agents who are on the

board are assumed to have access to the financial reports). It is assumed that y = θ,

unless there is a member of the board who intervenes. The cost of changing the value

of y is c < h − l. We assume that the number of risk-neutral agents is smaller than

the number of risk-averse agents, |L| > |E| > 1. Let us compare different boards in

the context of the maximal level of insurance that is attainable for risk-averse agents

under this board. By Corollary 2, the only deviations that we need to focus on are

side-contracts in which i 6∈M pays m ∈M to incentivize him to manipulate the signal.
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4.3.1 Everyone is on the board

Consider the case in which I = M . By Corollary 2, each constrained-efficient contract

is weakly stable. Since c < h − l and |L| > |E|, it must be that Ri (g) = −c for each

i ∈ E in a constrained-efficient contract g. That is, each risk-neutral agent absorbs c

dollars of the risk. The total coverage is c ∗ |E|.

4.3.2 Risk-averse agents are on the board

Let us assume that L = M . By Corollary 2, we need to worry only about deviations

in which a risk-neutral agent i ∈ E pays a risk-averse agent m ∈ L in order to incen-

tivize m to manipulate the signal. Agent i’s willingness to pay for manipulation that

guarantees that y = 1 regardless of the state is p2 (gi (1)− gi (2)). It follows that the

level of insurance that i ∈ E can provide is

gi (1)− gi (2) ≤ min
m∈M

{
c− gm (1) + gm (2)

p2

}
(5)

When each i ∈ E provides coverage of c dollars, (5) is slack. As a result, the total

coverage that is attainable is strictly greater then the coverage that is attainable when

M = I.

Can the agents attain the constrained-efficient level of insurance c ∗ |L|? For them

to obtain this coverage, each i ∈ E must be able to provide a coverage of at least |L|∗c|E|
dollars. Constraint (5) becomes |L|∗c|E| ≤

c−gm(1)+gm(2)
p2

. It follows that the constrained-

efficient level of insurance is attainable in a weakly stable contract if |L| ≤ 2
p2
|E|. Note

that although the constrained-efficient level of insurance may not be attainable when

M 6= I, the total insurance provided is strictly greater than in the case of M = I. This

follows from the fact that the set of constrained-efficient contracts is changed when the

board is changed.

4.3.3 Risk-neutral agents are on the board

Let us assume that M = E. Since, by assumption |E| < |L| in a constrained-efficient

contract, each i ∈ E provides a coverage of c dollars. As in the previous subsection, we

can use Corollary 2 to obtain that the only deviations that can undermine the weak

stability of a contract are those that have one agent i ∈ L who pays an agent m ∈ E in

order to incentivize m to manipulate the signal. Since |E| < |L|, i’s willingness to pay

in order to guarantee that the signal is realized to be 2 does not impose a constraint

on the ability to share risk. It follows that the constrained-efficient level of insurance
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is attainable in a weakly stable contract. Note that the coverage that can be provided

by risk-neutral agents is identical to the coverage that they can provide when M = I.

4.3.4 A mixture

Let us assume that M ∩ L, (I/M) ∩ L, (I/M) ∩ E, and M ∩ E are not empty. That

is, there are both risk-averse and risk-neutral agents on and off the board. In a

constrained-efficient contract g, each i ∈ (I/M)∩L is fully insured and gi (2)−gi (1) = c

for each j ∈ M ∩ L. This is because (I/M) ∩ E 6= ∅. Can this insurance coverage

be attained via a weakly stable contract? Note that in a constrained-efficient contract

there is at least one agent i ∈ L on the board who is indifferent to manipulating the

signal from 1 to 2, and at least one agent j ∈ L off the board such that gj (2) > gj (1).

Such a contract is not weakly stable because j can offer i a contract in which j pays i

an arbitrarily small payment conditional on y = 2. This contract makes both i and j

better off. By Corollary 2, such a contract is not rejected by i.

The mixture of agents on and off the board has three effects. First, the constrained-

efficient coverage increases (w.r.t. the case of L = M) because some risk-averse agents

are now off the board and so they can receive more than c dollars of coverage. Second, in

a weakly stable contract we must take into account deviations that include two members

of L. This implies that the constrained-efficient level of coverage is not attainable. As

we have seen in Application 1, the effect on the amount of coverage that the members

of L can receive is ambiguous. Finally, the coverage that the members of E can provide

is lower when some of them are on the board.

5 Discussion and extensions

In this section we relax some of our modeling assumptions, namely, symmetry, non-

triviality, and richness. We analyze the case of n = 3 and study a benchmark model

in which risk-sharing is centralized. In Appendix B we extend the model to include

multilateral side-contracts.

5.1 Symmetry

Let us relax the assumption that the cost of manipulation is identical for different agents

and different signals. Suppose that each i ∈M can change the signal’s realization from

y to y′ by paying a cost of ci (y → y′). What is the effect on the results obtained in
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the analysis section? Proposition 3 does not rely on symmetry at all. Propositions 1,

2, and 4 rely on the non-triviality of the economy. To obtain Propositions 1, 2, and

4, one should replace c < Wm and c < −Wm′ in the non-triviality assumption with

cm (2→ 1) < Wm and cm′ (1→ 2) < −Wm′ for some m,m′ ∈M . Proposition 5 is more

subtle.

First, recall that Proposition 5 follows directly from Lemma 3. The assumption

that ci (y → y′) = ci (y
′ → y) does not play a significant role in the proof of Lemma

3. In fact, this assumption can be completely relaxed. However, the assumption that

ci (y → y′) = cj (y → y′) for each i, j ∈ I is used. To see that, recall that the final

argument of Lemma 3 was that in order to persuade m′ to agree to the deviation bm′m,

after which he is supposed to manipulate the signal, m must pay m′ more than c dollars

in the relevant realization. This contradicted the assumption that the offer is beneficial

for m, who can manipulate the signal himself by paying c in just one of the realizations.

If the difference between cm (y → y′) and cm′ (y → y′) is sufficiently large, it may still

be beneficial for m to pay m′ more than cm′ (y → y′) so that m′ will manipulate the

signal. We demonstrate this argument with the following example.

Example 4 The agents’ endowments are summarized by the following table:

agent 1 2 3 4

wi (1) 10 20 100 200

wi (2) 20 10 200 100

Let p1 = 0.5 and ui (x) = log (x) for all i ∈ I. Let c1 (2→ 1) = 5 = c2 (1→ 2),

c3 (2→ 1) = 95 = c4 (1→ 2). In each constrained-efficient contract g, all of the agents

have binding manipulation constraints. That is, R1 (g) = −5, R2 (g) = 5, R3 (g) =

−50, and R4 (g) = 50.

Consider agent 4. Given a constrained-efficient contract, his willingness to pay in order

to guarantee that y = 2 is always greater than 5. If agent 4 makes an offer b24, such

that b24 (2) = 5 + 2ε, b24 (1) = 5 + ε > 5, agent 2 will never reject it (no matter what

his beliefs are). This offer violates agent 2’s incentive constraint. Therefore, g is not

weakly stable.

Although symmetry (between different agents) is used in the proof of Proposition

5, the result can be obtained with some degree of asymmetry. This follows from

the fact that in each constrained-efficient contract g, agent i’s willingness to pay for

manipulation to y = 1 (y = 2) is strictly lower than ci (2→ 1) (ci (1→ 2)).
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5.2 Non-triviality relaxed: An example

An economy is said to satisfy non-triviality if c is sufficiently low, and, in particular,

if c < Wi,−Wj for some i, j ∈ M . This assumption guarantees that in a constrained-

efficient contract there is at least one agent who is indifferent between manipulating

the signal or not and that, by Claim 2, constrained-efficient contracts are not Pareto-

efficient. But what if the possibility of manipulating the signal ex-post does not restrict

the agents? In this case, it turns out that the amplification of the moral hazard problem,

generated by the ability to write side-contracts, may still result in constrained risk-

sharing. To see this consider the following example.

Example 5 Let I = {1, 2, 3, 4}, M = {1, 3}, and W1 = W2 = −W3 = −W4 = c. Since

there is aggregate certainty, a Pareto-efficient contract g eliminates the agents’ initial

exposure such that Wi + Ri (g) = 0 for each i ∈ I. Note that g is also constrained-

efficient since the non-triviality condition fails in this economy. However, g is not

weakly stable. To see this note that R3 (g) = c and R4 (g) > 0. Suppose agent 4

initiates a deviation b34 such that b34 (2) > b34 (1) > 0. If b34 (2) is sufficiently low,

g + b34 �4 g. By Lemma 2, agent 3 does not have a consistent belief that blocks it.

5.3 An aggregate shock

In most of the analysis section we assumed that the economy is diverse and that Pareto-

efficient risk-sharing is precluded by the agents’ ability to manipulate the signal. Purely

aggregate shocks were ruled out by our assumption that there are two agents i, j such

that Wi > 0 > Wj. Without loss of generality, we now consider the case in which

all agents are (weakly) better off in state 2. That is, wj (1) ≤ wj (2) for each j ∈ I.

Corollary 2 holds in this case. Therefore, Propositions 3 and 5 hold.

The paper’s negative results (Propositions 2 and 4) utilize the characterization

of constrained-efficient contracts that is obtained in Proposition 1 and that relies on

both richness and non-triviality. In particular, they build on the fact that, when

richness and non-triviality are satisfied, a constrained-efficient contract must result in

two agents i 6∈M and m ∈M such that m is indifferent to manipulating the signal and

sign (Rm (g)) = sign (Ri (g)). Application 1 suggests an alternative assumption under

which constrained-efficient contracts have this property when the shock is aggregate.

Let us partition I into two disjoint sets, L and E, such that each i ∈ E is unaffected

by the shock (wi (1) = wi (2) for each i ∈ E) and cannot manipulate the signal. Suppose

that c < wm (2)− wm (1) for some m ∈M and that wi (2) > wi (1) for some i ∈ L/M .
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If the cardinality of E is sufficiently large w.r.t. the cardinality of L (or some of the

agents in E are risk-neutral), then a constrained-efficient contract must result in two

agents i 6∈ M and m ∈ M such that m is indifferent to manipulating the signal and

sign (Rm (g)) = sign (Ri (g)). This guarantees Propositions 2 and 4.

5.4 The case of n = 3

First, we show that the result obtained in Proposition 5 holds.

Claim 4 Let I = M = {1, 2, 3}. Each constrained-efficient contract is weakly stable.

To complete the analysis, assume that |M | = 2. We now present an example in

which there exists no contract that is both constrained-efficient and weakly stable.

Example 6 Let I = {1, 2, 3}, M = {2, 3}, W1 = 200,W2 = −50, W3 = ω, where

ω ∈ [−100, 0]. Let c = 50 and ui (x) = − exp (−αx) for all i ∈ I. Since for

each agent i the marginal rate of substitution between consumption in both states de-

pends only on Wi + Ri (g), in every constrained-efficient contract g, it must be that

R2 (g) = R3 (g) = 50. That is, both agent 2 and agent 3 are indifferent to manipulating

the signal or not. We now show that a constrained-efficient contract g is weakly stable

only if ω = 50.

Consider the following deviation bij, where i ∈ {2, 3}, j ∈ {2, 3} / {i}, and bij (2) >

bij (1) > 0. This contract is signed with the intention that i will manipulate the signal

from 1 to 2. Suppose that bij is offered by j. This deviation is beneficial for j if and

only if it violates i’s incentive constraint and

bij (2) < x =
1

α
log

[
1 + (1−p1)

p1
exp (−α (Wj +Rj (g)))

exp (−αRj (g)) + (1−p1)
p1

exp (−α (Wj +Rj (g)))

]

Suppose that bij (2) < x. We now consider the consistent beliefs that agent i may hold.

We will show that if ω 6= 50, then there is a contract bij that can be offered by i or j,

and cannot be blocked by a consistent belief.

Since bij (2) > bij (1) > 0, a belief βi (bij, g) such that i is not the one who is sup-

posed to manipulate the signal under g+βi (bij, g)+bij cannot be consistent. Therefore,

bij cannot be rejected based on such a belief. It follows that every consistent belief is

such that y (g + βi (bij, g) + bij, θ) = 2 for each θ ∈ {1, 2}. Let us study the signal’s
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realizations under g + βi (bij, g). If βi (bij, g) is such that y (g + βi (bij, g) , 1) = 1, then

j cannot be worse off agreeing to take part in bij. This is because he does not incur

any cost in state 2 and he is strictly better off in state 1. Therefore, this belief does not

allow agent i to reject agent j’s offer.

We now complete the analysis by considering an arbitrary consistent belief βi (bij, g)

such that y (g + βi (bij, g) , θ) = 2 for each θ ∈ {1, 2}. Agent i is better off accepting bij

if and only if:

p1ui (wi (1) + gi (2)) + p2ui (wi (2) + gi (2))

< p1ui (wi (1) + gi (2)− c+ bij (2)) + p2ui (wi (2) + gi (2) + bij (2))

Plugging in the example’s parameters, we get that:

bij (2) >
1

α
log

[
exp (αc) + 1−p1

p1
exp (−αWi)

1 + 1−p1
p1

exp (−αWi)

]
We can find bij (2) that satisfies the two conditions if and only if Wj > Wi. Therefore,

these two deviations (one deviation initiated by i, the other by j) are blocked by a

consistent belief only if ω = 50. Otherwise, either agent 2 or agent 3 can make an offer

that his counter-party will not reject.

5.5 Centralized trade

This subsection studies an economy in which, given a contract g, agents who want

to write additional contracts must give up on all of their trade relations in g. We

have in mind a story in which trade is organized by a planner. A group of agents

who want to appeal on the planner’s prescribed contract must leave the economy and

use the resources of its members. We show that in this case, constrained-efficient

insurance is attainable. That is, there exists a constrained-efficient multilateral risk-

sharing contract such that no coalition of agents (of any size) has an incentive to deviate

from it using the resources of its members (and only these resources). Formally:

Definition 7 We say that a contract g belongs to the core if there exists no other

contract gK such that gK �i g for each i ∈ K (with at least one strong preference).

Proposition 7 The core is non-empty.
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Proof. This proof is based on a result obtained by Scarf (1967): a balanced n-person

game has a non-empty core. Let T be a collection of subsets of I. We say that T is

balanced if it is possible to find non-negative weights δS for any subset S ∈ T such

that
∑

S∈T |i∈S δS = 1 for each i ∈ I. For any subset of agents S ⊆ I and contract gS,

define vi
(
gS
)

:= p1ui
(
wi (1) + gSi (1)

)
+ p2ui

(
wi (2) + gSi (2)

)
. We say that a profile

(vi)i∈S is attainable for the members of S ⊆ I if there exists an IR contract gS such

that vi
(
gS
)
≥ vi for all i ∈ S. A game is said to be balanced if, for each balanced

collection T (of subsets of I) and each profile (vi)i∈I such that for each S ∈ T , (vi)i∈S
is attainable for the members of S, the profile (vi)i∈I is attainable for the members of

I. We now show that our game is balanced.

Suppose that T is a balanced collection of subsets of I. Consider an arbitrary

vector (vi)i∈I such that (vi)i∈S is attainable for the members of S, for all S ∈ T .

We now show that there exists a contract g such that vi (g) ≥ vi for each i ∈ I.

Let gi (y) =
∑

S∈T |i∈S δSg
S
i (y) for each i ∈ I and y ∈ {1, 2}. Since T is balanced,

gi (θ) +wi (θ) is a convex combination of
(
gSi (θ) + wi (θ)

)
S∈T . It follows that, for each

i ∈ I:

vi (g) = p1ui (wi (1) + gi (1)) + p2ui (wi (2) + gi (2))

≥ min
S∈T

{
p1ui

(
wi (1) + gSi (1)

)
+ p2ui

(
wi (2) + gSi (2)

)}
≥ vi

We need to verify that
∑

i∈I gi (y) = 0 for all y ∈ {1, 2} in order to make sure that g

is a contract: ∑
i∈I

gi (y) =
∑
i∈I

∑
S3i

δSg
S
i (y) =

∑
S∈T

δS
∑
i∈S

gSi (y) = 0

The last thing that we need to check is that g is IC. To see this, note that for each

S ∈ T , gS is IR. Therefore,
∣∣Ri

(
gS
)∣∣ ≤ c. Recall that Ri (g) is a convex combination

of
(
Ri

(
gS
))
S∈T and therefore must also lie in [−c, c].

The proposition shows that when the agents must abandon their trade relations in

order to change the contracts that they have signed, constrained-efficient contracts are

stable. This is analogous to exclusive dealership contracts. These contracts are more

stable than the contracts that we have studied throughout the paper and, therefore,

they allow for better risk-sharing. However, exclusive dealership contracts are more

costly to implement since they are more complicated and require costly monitoring.
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6 Concluding remarks

In this paper we have studied multilateral risk-sharing using contracts that are con-

tingent on manipulable variables. It was shown that the moral hazard problem that is

generated by the manipulability of the contractible variable is significantly enhanced

when the agents can write bilateral side-contracts without withdrawing from the mul-

tilateral risk-sharing agreement. The reason for this is that these side-contracts can

be used to incentivize one of the contracting parties to manipulate the contractible

variable.

The main contributions of the paper are as follows. First, we incorporate the idea of

manipulation into multilateral risk-sharing. Second, our substantive results establish

that when it is possible to manipulate the contractible variable, risk-sharing is highly

constrained by the agents’ ability to write side-contracts. Third, we contribute to the

network formation literature by analyzing a network of contracts with a new externality

that results from the ability to manipulate the signal. Finally, at the methodological

level, we introduce a coarsening of pairwise stability in the tradition of cooperative game

theory by incorporating insights from the Nash equilibrium refinements literature.

Throughout the paper we studied the stability and efficiency properties of one mul-

tilateral contract. We ignored the structure of the multilateral contract and assumed

that the side-contracts are bilateral. This raises two questions. First, is the restric-

tion to bilateral contracts a constraint on multilateral risk-sharing? A result obtained

by Rader (1968) allows us to answer this question by suggesting one possible intu-

itive structure for constrained-efficient contracts: a collection of IR bilateral contracts.

However, Rader’s result only implies that there exists a constrained-efficient contract

that can be decomposed this way. In general, not all constrained-efficient multilateral

contracts can be decomposed into IR bilateral contracts. The second interesting ques-

tion is what would change in our results if we allowed for multilateral side-contracts.

We answer this question in Appendix B.

A key ingredient in the model is the fact that contracts are contingent on a sig-

nal about the state rather than contingent on the state itself. When contracts are

state-contingent, agents cannot avoid being exposed to externalities by reducing their

coverage. This is due to the fact that manipulation may have an effect on the agents’

endowments. Another important difference between state-contingent contracts and

contracts that are contingent on a state-dependent signal is that under the former,

there are cases in which an agent may be better off manipulating the signal himself

rather than having another agent doing the manipulating and paying the cost. In these
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instances, constrained-efficient contracts are pairwise stable. An explicit analysis is left

for future research.

Finally, we comment on the agents’ motivation to trade. The motivation for con-

tracting in this paper is risk-sharing. However, besides Proposition 1, the model does

not make particular use of this motivation. A similar analysis (left for future research)

could be made for other trading motivations, such as state-dependent utilities or dif-

ferences in the agents’ prior beliefs. The main difference between risk-sharing and

non-common prior beliefs as a motivation for contracting is that risk-sharing (specula-

tive trade) contracts are used to reduce (increase) the agents’ exposure to the state of

nature.

Related Literature

This work is related to the risk-sharing networks literature. Bramoulle and Kranton

(2007a, 2007b) study risk-sharing network formation models in which agents commit

to sharing monetary holdings equally with linked partners. In these models, the agents

trade off between costly link formation and better risk-sharing. Bloch, Genicot, and

Ray (2008) and Ambrus, Mobius, and Szeidl (2014) consider moral hazard in risk-

sharing networks. In these models, ex-post, an agent who is expected to make a

transfer to a network neighbor may prefer to deviate and withhold payment. An agent

who deviates loses some of his risk-sharing links. Bloch, Genicot, and Ray (2008) take

the risk-sharing agreements as given and characterize stable networks while Ambrus,

Mobius, and Szeidl (2014) take the network as given and study the degree and structure

of risk-sharing.

The model presented in this work is in the spirit of the strategic network formation

literature. Jackson and Wolinsky (1996) study a model in which agents’ payoffs depend

on links formed by them and their counter-parties. Jackson and Watts (2002) study the

dynamic formation of networks and show that, in principle, pairwise-stable networks

need not exist. Erol and Vohra (2015) study a model of systemic risk in which agents

form binary links, then learn a realization of some shock, and, based on this shock,

each agent has to decide on a binary action. In their model, the payoff of an agent

depends on the action he takes in the third stage, the actions of his neighbors, and the

realized shocks. Roketskiy (2015) studies strategic network formation in the context

of collaboration in winner-takes-all tournaments. He uses the farsighted stable set as a

solution concept and shows that the set of pairwise-stable networks and the farsighted

stable set may be disjoint.

Pomatto (2015) applies forward-induction reasoning to an incomplete information

matching problem using a non-cooperative approach. He considers given allocations
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and models a deviation game in which agents negotiate via take-it-or-leave-it offers.

An allocation is stable if in its deviation game agents abstain from making offers, ex-

pect no offer to be made by other agents, and in case an offer is made they interpret

it with the highest degree of strategic sophistication that can be ascribed to its pro-

poser. Weak stability incorporates forward-induction considerations of this kind into

a stability notion in the tradition of cooperative game theory.

Weak stability is related to the Nash equilibrium refinements literature (see, e.g.,

Kohlberg and Martens, 1986). A detailed discussion about its analogy to Cho and

Kreps’ (1987) intuitive criterion is to be found in Section 4.3. Another related concept

is Riley’s (1979) reactive equilibrium, in which agents react to observed deviations

by additional deviations. In the context of cooperative game theory, weak stability

is related to the counter-objections literature (see, e.g., Aumann and Maschler, 1961,

and Mas-Colell, 1989) that is used to overcome cases in which the core of an n-person

cooperative game is empty. Counter-objections are used to reduce the set of possible

deviations, as a deviation that has a counter-objection is not allowed.

Eliaz and Spiegler (2007, 2008, 2009) take a mechanism-design approach to prob-

lems in which agents are motivated to bet on the state of nature due to differences

in their prior beliefs. A major obstacle to the analysis of speculative trade is that

risk-neutral traders with different prior beliefs are willing to take infinite bets. Eliaz

and Spiegler assume that the agents can manipulate the contractible variable by incur-

ring some cost. This assumption creates incentive constraints that restrict the betting

stakes.

Duffie and Stein (2015) study economic benchmarks such as the inter-bank offered

rates. They explain the importance of these benchmarks in reducing market frictions

and how trade is agglomerated around these benchmarks. Duffie and Stein explain

how manipulation occurs in practice in these markets, and illustrate how benchmark

definitions and fixing methods can mitigate manipulation.

Greenwald and Stiglitz (1986) establish that when there are distortions (for ex-

ample, incomplete markets or imperfect information) the first welfare theorem does

not apply: competitive economies are not constrained-efficient. The inefficiency re-

sults obtained in the present paper are in the spirit of Greenwald and Stiglitz’s result.

However, the two follow from different strategic considerations.
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7 Appendix A: Manipulation games

Throughout the analysis it was assumed that when a contract is not IC, the agent

who receives the most coverage (in absolute value), m ∈ M , sets the signal and pays

for manipulation when it is necessary (i.e., when y (g, θ) 6= θ). In this appendix we

discuss this assumption and present two manipulation games in which it is obtained as

a result of an equilibrium. Later, we present three additional games in which the above-

mentioned assumption is not supported by an equilibrium. However, we show that our
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main result (Proposition 4) holds when we replace the aforementioned assumption with

each of the the latter manipulation games.

We mention that the agents play two manipulation games, one in each state. The

primitives of each manipulation game Γ include a set of players M , a state θ, endow-

ments (wi (θ))i∈M , and a contract g. In each game, the set of actions available to each

agent includes at least one action that is costless and is interpreted as not trying to

manipulate the signal. We omit the set of players, actions, and endowments from the

description of a manipulation game Γ (θ, g) and denote the signal that results from the

manipulation game by7 y (Γ (θ, g)).

Throughout this appendix we focus on pure strategy equilibria. This is for two

reasons. First, mixed strategy equilibria of the games we present have the unappealing

property that the greater one’s incentive to manipulate the signal is, the lower the prob-

ability that he actually manipulates it. This unattractive property of mixed-strategy

equilibria in concession games and war of attrition games is well known. Second, in

many of the games described in this section as well as their variations, mixed strategy

equilibria are not robust in the sense that there always exists a group of agents who

can improve their payoff by coordinating using a jointly controlled lottery (Aumann,

Maschler, and Stearns, 1968) before the start of the game.

Before we start analyzing the different manipulation games, let us state the fol-

lowing conventions and notation. Let D (g) := {i ∈ PM (g) |Ri (g) < 0}, U (g) :=

{i ∈ PM (g) |Ri (g) > 0}. That is, D (g) (U (g)) is the set of manipulators who are

incentivized to manipulate the signal from 2 (1) to 1 (2). We assume that if an agent is

indifferent between using an action that is interpreted as manipulation of the signal or

not, then he does not manipulate the signal. In the three manipulation games in which

our assumption is not obtained as a result of an equilibrium (manipulation games 3,

4, and 5), we check the robustness of the paper’s main result (Proposition 4). We do

so by showing that Lemma 2 holds, as this is the only part of the proposition in which

the assumption that we relax in the appendix is used. The lemma demonstrated one

deviation that is not blocked by a consistent belief. Without loss of generality, in the

appendix, we study one deviation bij, initiated by j 6∈M , such that bij (2) > bij (1) > 0,

i ∈M , and g+ bij �j g. Since g+ bij �j g, it follows that Ri (g + bij) > c. We consider

an arbitrary belief of the offer’s receiver βi (bij, g) and show that either βi (bij, g) is

inconsistent or that it does not block bij. If this deviation is not blocked, agent i is

assumed to accept it. In this case, it is an equilibrium for him to manipulate the signal

such that the resulting signal is 2 regardless of the state of nature.

7We allow the result of a manipulation game to be a distribution of signals.
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7.1 Game 1: Repeated opportunities to manipulate the signal

The manipulation game Γ1 is sequential. In each period one agent i ∈ M is given an

opportunuity to manipulate the signal. Agent i is informed about the state of nature

and the current value of the signal. He decides whether to manipulate the signal or

not. In case i decides to manipulate the signal, he pays c, and the signal’s value

changes. In each period there is an exogenous probability of 1− δ that the game ends

immediately. The outcome of the game is the signal at its end. Agent i’s payoff is

ui (wi (θ) + gi (y
′)− tc), where y′ is the signal that results from the game and t is the

number of times i has manipulated the signal.

Our interpretation of Γ1 is of a situation in which the agents have random access

to a functionary/appraiser that he can bribe. We now present a selection between the

possible equilibria of Γ1. This selection is based on the idea that the agent who has

the most to gain is perceived by others to be more eager to manipulate the signal.

Equilibrium that supports our assumption

If g is IC, then it is an equilibrium for each i ∈ M never to manipulate the signal.

If g is not IC, then there exists a stopping probability δ < 1 for which the following

profile of strategies is a sub game perfect Nash equilibrium. The agent who receives

the most coverage (in absolute value) always manipulates the signal to his preferred

realization when it is his turn to play. The other agents never try to manipulate the

signal. Note that for any contract g, δ must be sufficiently close to 1 in order for the

aforementioned profile to be a subgame perfect Nash equilibrium of Γ1. If we do not

allow the agents to trade such that their wealth falls below some threshold z ≤ 0 (or

put any other restriction on the size of the contracts’ stakes), then there is a probability

δ sufficiently close to 1 that covers all admissible contracts.

7.2 Game 2: Second-price auction

The members of M play a second-price auction (with a symmetric tie-breaking rule)

whose winner pays the second-highest bid and gets the right to set the signal. He can

pay additional c dollars and manipulate the signal or keep the signal’s value at no cost.

Here we interpret c as a combination between the cost of manipulation. The agents

can be interpreted as a regulator that is lobbied or a functionary that is bribed. In our

selected equilibrium the functionary receives no bribe. This as an implicit assumption

that the regulator/functionary is not strategic.

An equilibrium that supports our assumption
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The (lowest labeled) agent with the most coverage (in absolute value) i ∈ PM (g)

submits a bid bi = |Ri (g)| and all of the other agents submit 0. If Ri (g) > c (Ri (g) <

−c), agent i pays c in the case where θ = 1 (θ = 2). Note that bidding 0 is not

dominated by bidding one’s coverage since manipulation is a public good (it may be

better to lose the auction and avoid paying for manipulation).

7.3 Game 3: One opportunity to manipulate the signal

In the manipulation game Γ3, nature randomly draws an order according to which the

agents are called to play. Each agent plays once. An agent who is called to play learns

the state and the current value of the signal. He chooses to manipulate the signal and

pay c or not. He does not know how many players have played or how many times the

signal was manipulated before (but when the signal does not match the state, he can

infer that there has been at least one manipulation). The outcome of the game is the

signal y at its end. Player i’s payoff is ui (wi (θ) + gi (y)− c) (ui (wi (θ) + gi (y))) if he

manipulates (does not manipulate) the signal.

Existence of pure strategy equilibria

The existence of a pure strategy equilibrium is not straightforward, and to the proof

of its existence we now turn. Assume without loss of generality that θ = 1. If D (g)

is empty, then there exists a pure strategy equilibrium in which no agent manipulates

the signal to y = 1. If U (g) is empty, then there exists a pure strategy equilibrium in

which no one manipulates the signal. We now assume that both U (g) and D (g) are

not empty.

Fix the strategies of the members of U (g) such that one agent i ∈ U (g) manipulates

the signal when he observes y = 1 and the other agents never manipulate it. Then,

partition D (g) into two disjoint sets (where one of the sets is allowed to be empty)

such that all members in D+
0 (g) (D−0 (g)) manipulate (do not manipulate) the signal

when they observe y = 2 and this is a best reply to the other agents’ actions (members

of D (g) do not manipulate the signal when they observe y = 1). There exist two such

sets since the probability of being pivotal (agents want to manipulate the signal only

if they are pivotal) is decreasing in the number of agents who manipulate the signal.

Note that these strategies are also best replies to a profile of strategies in which all

members of U (g) do not manipulate the signal under the belief that if an unexpected

manipulation has happened (that is, if the signal’s value is 2 although there were no

expected manipulations), a member of U (g) caused it (this belief is the only one that

survives the intuitive criterion).
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Fix the aforementioned actions of the members of D+
0 (g) and D−0 (g) and consider

U (g). Create the two disjoint sets U+
0 (g) and U−0 (g) in a similar way. That is, all

members of U+
0 (g) (U−0 (g)) manipulate (do not manipulate) the signal when they ob-

serve y = 1. If
∣∣U+

0 (g)
∣∣ ∈ {0, 1}, then we have found an equilibrium. If

∣∣U+
0 (g)

∣∣ > 1,

then fix the strategies of the members of U+
0 (g) and U−0 (g) and consider the members

of D (g) again. Partition D (g) into two disjoint sets (where one of the sets is allowed

to be empty) such that all members in D+
1 (g) (D−1 (g)) manipulate (do not manipu-

late) the signal when they observe y = 2 and this is a best reply to the other agents’

actions. It must be that
∣∣D+

1 (g)
∣∣ ≤ ∣∣D+

0 (g)
∣∣ since the probability of each i ∈ D (g)

being pivotal given U+
0 (g) and U−0 (g) is smaller than this probability under the as-

sumption that only one member of U (g) manipulates the signal. Similarly, fix U+
1 (g)

and U−1 (g) and observe that
∣∣U+

1 (g)
∣∣ ≥ ∣∣U+

0 (g)
∣∣. Continue with this algorithm until∣∣U+

i (g)
∣∣ =

∣∣U+
i+1 (g)

∣∣. Note that the algorithm must end since
∣∣U+

i (g)
∣∣ ≥ ∣∣U+

i−1 (g)
∣∣

for any stage i > 1 and M is finite. The algorithm ends in an equilibrium since each

agent’s action is a best response to the other agents’ actions.

Robustness of Proposition 4

The game Γ3 may have multiple equilibria. Before we prove the robustness of

Proposition 4, we present a selection criterion that we refer to as no sunspots. This

criterion will be used to select between the different equilibria of Γ3. No sunspots

implies that when some agent j’s payoff is changed, the selection between equilibria in

which j does not manipulate the signal is not changed.

Formally, we say that there are no sunspots if the following condition is met for

each two contracts g and g′ that differ only in an arbitrary agent j’s payoff, and for

each two profiles of strategies (si)i∈M and (s′i)i∈M in which j does not manipulate the

signal.

• If (si)i∈M and (s′i)i∈M are both equilibria of the manipulation game Γ3 = (θ, g),

(si)i∈M is an equilibrium of the manipulation game Γ′3 = (θ, g′), and (si)i∈M is

played in Γ3 = (θ, g), then (s′i)i∈M is not played in Γ′3 = (θ, g′).

We now show that the result obtained in Proposition 4 holds. We need to show

that under any consistent belief βi (g, bij) that agent i may hold, the equilibria of

Γ3 (1, g + βi (g, bij)) and Γ3 (2, g + βi (g, bij)) are not changed in a way that makes i

worse off if he agrees to bij. Recall that in the contract bij agent j pays agent i a
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strictly positive amount in both realizations of the signal, and that consistency implies

that j is not worse off by making this offer to i.

There are four different cases, namely, U (g + βi (g, bij)) can be empty or not, and

D (g + βi (g, bij)) can be empty or not. In the case in which both U (g + βi (g, bij)) and

D (g + βi (g, bij)) are empty, it is straightforward to see that i is better off agreeing to

bij. We now analyze the other three cases.

Case 1: Let us assume that U (g + βi (g, bij)) is not empty and D (g + βi (g, bij)) is

empty. It must be the case that y (Γ3 (θ, g + βi (bij, g))) = y (Γ3 (θ′, g + βi (bij, g) + bij)) =

2 for each θ, θ′ ∈ {1, 2}. Therefore, βi (bij, g) is inconsistent.

Case 2: Let us assume that D (g + βi (g, bij)) is not empty and U (g + βi (g, bij)) is

empty. Then, y (Γ3 (θ, g + βi (bij, g))) = 1 for each θ ∈ {1, 2}. Agent i can guarantee

himself a payoff of at least ui (wi (θ) + gi (1) + bij (1)) > ui (wi (θ) + gi (1)) regardless

of the other agents’ actions. It follows that i cannot be worse off agreeing to bij.

Case 3: Suppose that U (g + βi (g, bij)) and D (g + βi (g, bij)) are both not empty.

We start with the game Γ3 (1, g + βi (g, bij) + bij). We can set Ri (g)− c > 0 to be ar-

bitrarily small, such that i manipulates the signal from 1 to 2 only if he is the only one

to manipulate the signal (i.e., he is pivotal with probability 1). If there exists such an

equilibrium, then each agent k ∈ D (g + βi (g, bij)) who observes that the signal’s value

is 2 knows that i has already manipulated it, and therefore agent k is pivotal with prob-

ability 1. It follows that agent k’s unique best response in this case is to manipulate the

signal. Since by assumption D (g + βi (g, bij)) is not empty, there exists no such equi-

librium in Γ3 (1, g + βi (g, bij) + bij). By no sunspots, the equilibrium played does not

change because of the addition of bij and so Pr {y (Γ3 (1, g + βi (g, bij) + bij)) = θ} =

Pr {y (Γ3 (1, g + βi (g, bij))) = θ} for each θ ∈ {1, 2}.
Let us consider Γ3 (2, g + βi (g, bij) + bij). By the previous argument, the signals’

distribution that results from Γ3 (2, g + βi (g, bij) + bij) is different from the one that

results from Γ3 (2, g + βi (g, bij)). Otherwise, βi (bij, g) is not consistent. Recall that

we set Ri (g)− c > 0 to be small such that i manipulates the signal only if he is pivotal

with probability 1, that is, if there is no k ∈ U (g + βi (g, bij)) that manipulates the

signal and there is at most one agent in D (g + βi (g, bij)) who manipulates it. If there

exists no such equilibrium, then by no sunspots, βi (bij, g) is not consistent.

Assume that there exists an equilibrium of Γ3 (2, g + βi (g, bij) + bij) in which i ma-

nipulates the signal, no other member of U (g + βi (g, bij)) manipulates it, and the

number of members of D (g + βi (g, bij)) who manipulate it is8 z ∈ {0, 1}. Let us

8It is assumed that if z = 0, and an agent h observes y = 1, he believes that this unexpected
manipulation results from the action of some agent k such that Rk (g + βi (bij , g)) < 0. Any other
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consider Γ3 (2, g + βi (g, bij)) and the number of members of U (g + βi (g, bij)) who ma-

nipulate the signal in the equilibrium that is played. Denote this number by v. If v = 1,

then it must be that z members of D (g + βi (g, bij)) manipulate the signal. This belief

is inconsistent since the signals’ distribution that results from Γ3 (2, g + βi (g, bij) + bij)

is not different from the one that results from Γ3 (2, g + βi (g, bij)). Let us assume that

v 6= 1.

Suppose that v = 0. SinceD (g + βi (g, bij)) is not empty, exactly one of its members

manipulates the signal. This cannot be a part of an equilibrium since U (g + βi (g, bij))

is not empty and each of its members is pivotal with probability 1.

Suppose that v ≥ 2. It follows that there is an agent h ∈ U (g + βi (g, bij)) / {i}
who prefers to manipulate the signal when i is the only one to manipulate it from

1 to 2 and z ∈ {0, 1}. This is in contradiction to the existence of an equilibrium of

Γ3 (2, g + βi (g, bij) + bij) in which i manipulates the signal.

To conclude, a belief can be consistent only if U (g + βi (g, bij)) is empty. Therefore,

i is not worse off agreeing to bij. It follows that the result obtained in Lemma 2 holds.

7.4 Game 4: Manipulation with an aggressiveness relation

Let Q be a strict linear ordering according to which the agents are ordered. The inter-

pretation of hQk is “h is stronger than k”. Each agent decides . He observes the actions

of those who played before him and does not know the order of the agents who will play

after him. Each agent chooses between the three actions +, −, and =. The first two

actions are interpreted as manipulating the signal to 2 and 1, respectively. Their cost is

c. The third action is costless and is interpreted as not trying to manipulate the signal.

The signal is set to θ unless some of the agents manipulate it. In the latter case, it

is set according to the action of the strongest agent who chose to manipulate the signal.

In this game we assume that there is one agent who is stronger than the others.

His action defeats any action taken by other agents. Unlike the first two examples, the

strength relation is exogenous in this case.

Robustness of Proposition 4

It is easy to see that the signal must be set in favor of the strongest agent in

PM (g). Therefore, consistency of βi (bij, g) implies that i must be the strongest agent

in PM (g + βi (bij, g) + bij). Also, if PM (g + βi (bij, g))) is not empty, consistency

belief does not survive the intuitive criterion.
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of βi (bij, g) implies that the signal that results from the contract g + βi (bij, g) is 1

regardless of the state of nature. Therefore, i cannot be worse off agreeing to bij.

8 Appendix BL Multilateral side-contracts

In the paper we restricted the size of the deviating coalition. We only allowed for devi-

ations by pairs of agents. We now generalize our solution concept and allow for larger

deviating coalitions. In addition, we allow the agents’ beliefs to consist of multilateral

contracts. Formally, an offer is a pair
(
i, gK

)
, where i is the proposer of the offer and

gK is a multilateral contract such that i ∈ K ⊆ I. A belief γj
(
i, gK , g

)
is a collection

of other contracts
(
gK

′)
i∈K′

K′∈2I/{k}
proposed by i. Note that a belief is a function of the

current contract g, the proposer i, and the offered contract gK .

Definition 8 A belief γk
(
i, gK , g

)
is group-consistent if g + gK + γk

(
i, gK , g

)
�i g +

γk
(
i, gK , g

)
.

Definition 9 A contract g is group weakly-stable if, for any contract gK such that

g + gK �i g for some i ∈ K, there exists another agent j ∈ K/ {i} and a group-

consistent belief γj
(
i, gK , g

)
such that g + γj

(
i, gK , g

)
+ gK ≺j g + γj

(
i, gK , g

)
.

We now establish that the inefficient risk-sharing problem under group-weak-stability

is more severe than under weak stability.

Proposition 8 If a contract g is not weakly stable, then it is not group-weakly stable.

Proof. Assume by negation that g is not weakly stable and is group-weakly stable. It

follows that there is a deviation bij, initiated by i, that is not blocked by any consistent

belief βj (bij, g), but is blocked by a group-consistent belief γj (i, bij, g). Consider the

multilateral contract that sums all of the contracts that are included in γj (i, bij, g) and

denote it by g′.

Note that consistency and group-consistency impose no restrictions on agent j’s

beliefs about the considerations of each agent k 6= i. Moreover, there are no restrictions

on agent j’s beliefs about i’s considerations w.r.t. contracts that he signs with other

agents. In particular, these contracts need not be IR for i or his counter-parties to the

contracts. Therefore, any belief that consists of a collection of bilateral contracts (such

that i is one side of each contract) that induces g′ is consistent. Since contracts are

budget-balanced transfers between the agents, there exists such a collection of bilateral

contracts.
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It turns out that some contracts and, in particular, constrained-efficient ones can

be weakly stable but not group-weakly stable. The reason for this is that multilateral

deviations initiated by members of I/M allow them to split the cost of incentivizing

others to manipulate the signal. In the next result we demonstrates this fact. We

enlarge the economy and show that the aggregate coverage that can be provided to

”non-manipulators” (in an IR group-weakly stable contract) is bounded from above.

We now describe a procedure to enlarge the economy. We imagine the econ-

omy to be composed of n types of agents with r agents of each type. For two

agents to be of the same type we require that they have the same preferences, the

same manipulation cost, and the same initial resources. Given an economy E =(
(ui)i∈I , (wi (θ)) i∈I

θ∈{1,2}
, p1, c,M, I

)
, we define the replica economy Er to be the econ-

omy E with r agents of each type.

Proposition 9 Fix an economy E =

(
(ui)i∈I , (wi (θ)) i∈I

θ∈{1,2}
, p1, c,M, I

)
such that

M 6= I. There exists a number T > 0 such that for each economy Er, and each IR

group-weakly stable contract g,
∑

i 6∈M |Ri(g)>0Ri (g) ≤ T and
∑

i 6∈M |Ri(g)<0Ri (g) ≥ −T .

Proof. Let us consider an IR contract g and an agent i 6∈M . ConsiderK ⊆ I such that

{m} = K ∩M and i ∈ K. Suppose i makes an offer gK such that gKi (1) , gKi (2) < 0,

Rm

(
g + gK

)
> c, and g + gK �i g. That is, agent i suggests a contract in which

he receives a negative payoff in both of the signal’s realizations, and gm (2) > gm (1).

By the arguments made in Lemma 2, agent m has no consistent belief (or group-

consistent belief) that blocks this contract. Consider agent k ∈ K/ {i,m}. Since

gKi (1) , gKi (2) < 0, group-consistency of γk
(
i, g, gK

)
implies that m changes his action

because of gK . That is, either m manipulates the signal from 1 to 2 because of gK

(and according to g + γk
(
i, g, gK

)
the signal is realized to be 1 in state 1), or m was

supposed to manipulate the signal from 2 to 1 according to g + γk
(
i, g, gK

)
and he

does not manipulate the signal given the addition of gK . In both cases, because of gK ,

the realization of the signal is changed from 1 to 2 in (at least) one of the states.

Each agent k ∈ K/ {i,m} such that Rk (g) > 0 is willing to pay a strictly pos-

itive amount xk (g) for this change in m’s behavior. Since IR implies that g is non-

manipulable, it must be that |Rm (g)| ≤ c for allm ∈M . It follows that
∑

k 6∈M |Ri(g)>0 xk (g) ≤
2c in every weakly stable contract g. As a result, there is a number T such that∑

i 6∈M |Ri(g)>0Ri (g) ≤ T . The proof of the symmetric case is omitted.

Corollary 4 The maximal average coverage
∑
i 6∈M |Ri(g)|
|I/M | that can be attained (via a
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group-weakly stable contract) by agents who are unable to manipulate the signal goes

to 0 as r goes to infinity.

It turns out that enlarging the size of the deviating coalition does not have an effect

on the stability of constrained-efficient contracts when M = I. In Proposition 5 it is

established that constrained-efficient contracts are weakly stable when M = I. Since

the proof of the group-weak stability of constrained-efficient contracts when M = I is

very similar to the proof of Lemma 3, it is omitted.

9 Appendix C: Proofs

9.1 Proof of Claim 1

If g is not IC, the signal is realized to be y ∈ {1, 2} regardless of θ. Since the signal

is independent of the state, any non-degenerate contract g makes at least one of the

agents worse off. Since g is not IC, it is non-degenerate.

9.2 Proof of Claim 2

It is well known that in every Pareto-efficient contract g′, Wi + Ri (g
′) ≤ 0 for each

i ∈ I or Wi + Ri (g
′) ≥ 0 for each i ∈ I. Since c < Wi, the constrained-efficiency of g

implies that Wi + Ri (g) > 0. Since c < −Wj, the constrained-efficiency of g implies

that Wj +Rj (g) < 0. It follows that g is not Pareto-efficient.

9.3 Proof of Lemma 3

Let us consider a deviation bm′m, initiated by m, such that g + bm′m �m g. Suppose

that bm′m (1) < 0. That is, m′ pays m a strictly positive amount if the signal is realized

to be 1. We will now find a consistent belief βm′ (bm′m, g) that blocks this deviation.

Since n > 3, there exist two agents l, k ∈ I/ {m,m′}. Let βm′ (bm′m, g) = (bmk, bml)

such that bmk (1)− bmk (2) = bml (1)− bml (2) = d. One can choose d large enough such

that gm (1) − gm (2) + 2d > max {c, Rm′ (g + bm′m) , Rk (g) + d,Rl (g) + d}. It follows

that under βm′ (bm′m, g), m sets the signal to be 1 in both states. Since bm′m (1) < 0,

βm′ (bm′m, g) is consistent and blocks bm′m. The case of a deviation bm′m such that

bm′m (2) < 0 is symmetric and its proof is omitted.

To complete the analysis, we now consider deviations bm′m such that bm′m (y∗) >

bm′m (y′) ≥ 0 for y∗ 6= y′. Without loss of generality, assume that y∗ = 2. It follows
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that Rm (bm′m) = bm′m (1) − bm′m (2) < 0. Since |M | ≥ 3, there exists an agent

k ∈M/ {m′,m}. Consider a belief βm′ (bm′m, g) = (bmk, bml) such that k ∈M/ {m,m′}
and l ∈ I/ {m,m′, k}. Fix the two contracts bmk, bml such that

−Rm (g + bmk + bml + bm′m) > Rk (g + bmk) >

−Rm (g + bmk + bml) > max {Rm′ (g + bm′m) , |Rl (g + bml)| , c}

The contract bm′m changes the realization of the signal in both states since it changes

the identity of the agent who decides on it. That is, y (g + bmk + bml + bm′m, θ) = 1

and y (g + bmk + bml, θ) = 2 for each θ ∈ {1, 2}. Note that |Rm (bmk + bml)| can be set

to be sufficiently large such that βm′ (bm′m, g) is consistent. Agent m′ is not worse off

agreeing to bm′m according to βm′ (bm′m, g) only if

p1um′ (wm′ (1) + gm′ (2)) + p2um′ (wm′ (2) + gm′ (2))

≤ p1um′ (wm′ (1) + gm′ (1) + bm′m (1)) + p2um′ (wm′ (2) + gm′ (1) + bm′m (1))

This implies that Rm′ (g) = gm′ (2)−gm′ (1) ≤ bm′m (1). Since g is IR and g+bm′m �m g,

it must be that m′ is supposed to decide on the signal given g + bm′m. Therefore,

|Rm′ (g + bm′m)| > c. Since bm′m (2) > bm′m (1), Rm′ (g + bm′m) > c. It follows that

bm′m (2) − bm′m (1) + Rm′ (g) > c. As a result, bm′m (2) > c. But this implies that

g + bm′m ≺m g.

9.4 Proof of Claim 4

Let g be a constrained-efficient contract. Without loss of generality, assume that

R1 (g) < 0, R2 (g) , R3 (g) ≥ 0. Since g is constrained-efficient, each contract bij such

that g + bij �i g and g + bij �j g must violate one of the counter-parties’ incentive

constraints. Otherwise, g is Pareto-dominated by g + bij. This implies that the only

candidates to undermine the weak stability of g are contracts between agents 2 and

3. Moreover, if there exists a contract b23 such that g + b23 �3 g and g + b23 �2 g,

then R2 (g) > 0 and R3 (g) > 0. Furthermore, since c ≥ |R1 (g)| = R2 (g) + R3 (g),

R2 (g) , R3 (g) < c. Since agent 2’s and agent 3’s incentive constraints are not binding,

and g is constrained-efficient, the two agents have the same marginal rates of substi-

tution between consumption in the two states (
u′2(w2(1)+g2(1))

u′2(w2(2)+g2(2))
=

u′3(w3(1)+g3(1))

u′3(w3(2)+g3(2))
).

Assume without loss of generality that there exists a contract b23 such that g+b23 �3

g and g+b23 �2 g, that incentivizes agent 3 to manipulate the signal from 1 to 2. Since
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g + b23 �3 g, it must be that

p1u3 (w3 (1) + g3 (1)) + p2u3 (w3 (2) + g3 (2))

< p1u3 (w3 (1) + g3 (2)− b23 (2)− c) + p2u3 (w3 (2) + g3 (2)− b23 (2))

≤ p1u3 (w3 (1) + g3 (2)− b23 (2) +R1 (g)) + p2u3 (w3 (2) + g3 (2)− b23 (2))

= p1u3 (w3 (1) + g3 (2)− b23 (2)−R2 (g)−R3 (g)) + p2u3 (w3 (2) + g3 (2)− b23 (2))

= p1u3 (w3 (1) + g3 (1)− b23 (2)−R2 (g)) + p2u3 (w3 (2) + g3 (2)− b23 (2))

Since g + b23 �2 g, it must be that

p1u2 (w2 (1) + g2 (1)) + p2u2 (w2 (2) + g2 (2))

< p1u2 (w2 (1) + g2 (2) + b23 (2)) + p2u2 (w2 (2) + g2 (2) + b23 (2))

= p1u2 (w2 (1) + g2 (1) +R2 (g) + b23 (2)) + p2u2 (w2 (2) + g2 (2) + b23 (2))

In words, agent 3 pays (receives from) agent 2 an amount b23 (2) + R2 (g) (b23 (2)) in

state 1 (2) in an economy where manipulation is impossible. Since the marginal rate

of substitution between consumption in both states is identical between agents 2 and

3, this is a contradiction to the assumption that g + b23 �3 g and g + b23 �2 g.
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